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Abstract

Deep learning models typically require a large volume of data. Manual curation of datasets is

time-consuming and limited by imagination. As a result, natural language generation (NLG)

has been employed to automate the process. However, in their vanilla formulation, NLG models

are prone to producing degenerate, uninteresting, and often hallucinated outputs [61]. Con-

strained generation aims to overcome these shortcomings by providing additional information

to the generation process. Training data thus generated can help improve the robustness of

other deep learning models. Therefore, the central research question of the thesis is:

“How can we constrain generation models, especially in NLP, to produce meaningful

outputs and utilize them for building better classification models?”

To demonstrate how generation models can be constrained, we present two approaches for

paraphrase generation. Paraphrase generation involves the generation of text that conveys the

same meaning as a reference text. We propose two strategies for paraphrase generation:

1. DiPS (Diverse Paraphraser using Submodularity): The first approach deals with con-

straining paraphrase generation to ensure diversity, i.e., ensuring that generated text(s)

are sufficiently different from each other. We propose a decoding algorithm for obtain-

ing diverse texts. We provide a novel formulation of the problem in terms of monotone

submodular function maximization, specifically targeted toward the task of paraphrase

generation. We demonstrate the effectiveness of our method for data augmentation on

multiple tasks such as intent classification and paraphrase recognition.

2. SGCP (Syntax Guided Controlled Paraphraser): The second approach deals with con-

straining paraphrase generation to ensure syntacticality, i.e., ensuring that the generated

text is syntactically coherent with an exemplar sentence. We propose Syntax Guided

Controlled Paraphraser (SGCP), an end-to-end framework for syntactic paraphrase gen-

eration without compromising relevance (fidelity). Through a battery of automated met-
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Abstract

rics and comprehensive human evaluation, we verify that this approach does better than

prior works that utilize only limited syntactic information in the parse tree.

The second part of the research question pertains to ensuring that the generated output is

meaningful. Towards this, we present an approach for paraphrase detection to ascertain that

the generated output is semantically coherent with the reference text. Paraphrase Detection is

the task of detecting whether or not the two input natural language statements are paraphrases

of each other. Fine-tuning pre-trained models such as BERT and RoBERTa on paraphrastic

datasets has become the go-to approach for such tasks. However, tasks like paraphrase de-

tection are symmetric - they require the output to be invariant with the order of the inputs.

In the traditional fine-tuned approach for paraphrase classification, inconsistency is often ob-

served in the predicted labels or confidence scores based on the order of the inputs. We validate

this shortcoming and apply a consistency loss function to alleviate inconsistency in symmetric

classification. Our results show an improved consistency in predictions for three paraphrase

detection datasets without a significant drop in the accuracy scores.

While these works address the research question via paraphrase generation and detection, the

approaches presented here apply broadly to NLP-based deep learning models that require im-

posing constraints and ensuring consistency. The work on paraphrase generation can be ex-

tended to impose new kinds of constraints (for example, sentiment coherence) on generation,

while paraphrase detection can be applied to ensure consistency in other symmetric classifica-

tion tasks (for example, sarcasm interpretation) that use deep learning models.

iv



Publications based on this Thesis

The work in this dissertation is based on the following peer-reviewed articles.

1. Ashutosh Kumar*, Satwik Bhattamishra*, Manik Bhandari, and Partha Talukdar.

“Sub-modular optimization-based diverse paraphrasing and its effectiveness in data aug-

mentation”. In Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, Volume

1(Long and Short Papers), pages 3609–3619, Minneapolis, Minnesota, June 2019. Asso-

ciation for Computational Linguistics.

2. Ashutosh Kumar, Kabir Ahuja, Raghuram Vadapalli, and Partha Talukdar; “Syntax-

Guided Controlled Generation of Paraphrases”. Transactions of the Association for Com-

putational Linguistics 2020; 8 330–345.

3. Ashutosh Kumar and Aditya Joshi; “Striking a Balance: Alleviating Inconsistency in

Pre-trained Models for Symmetric Classification Tasks”. Findings of the Association for

Computational Linguistics 2022. Association for Computational Linguistics.

The following articles were also completed during the course of the Ph.D. but have not been

discussed in the dissertation

1. Ashutosh Kumar, Arijit Biswas, Subhajit Sanyal. “Ecommercegan: A generative adver-

sarial network for e-commerce”. In: 6th International Conference on Learning Represen-

tations - Workshop Track Proceedings, ICLR 2018, 30-3 May 2018, Vancouver; Canada.

2. Kaustubh D. Dhole, et. al. (includes Ashutosh Kumar). “NL-Augmenter: A Frame-

work for Task-Sensitive Natural Language Augmentation”. arXiv preprint arXiv:2112.02721,

2021

3. Ashutosh Kumar. “Discovering Non-Monotonic Autoregressive Ordering for Text Gen-

eration Models using Sinkhorn Distributions”. ICLR Blog Track, 2022.

v



Softwares released based on this Thesis

1. Diverse Paraphraser using Submodularity (DiPS).

Paper - Submodular optimization-based diverse paraphrasing and its effectiveness in data

augmentation: NAACL 2019.

Source (LSTM) - https://github.com/malllabiisc/DiPS

Source (Transformers) - https://github.com/GEM-benchmark/NL-Augmenter/tree/main/

nlaugmenter/transformations/diverse_paraphrase

2. Syntax-Guided Controlled Paraphraser (SGCP) .

Paper - Syntax-Guided Controlled Generation of Paraphrases

TACL 2020.

Source - https://github.com/malllabiisc/SGCP

3. Alleviating Inconsistency in Pre-trained Paraphrase Detector

Paper - Striking a Balance: Alleviating Inconsistency in Pre-trained Models for Symmetric

Classification Tasks.

Findings of ACL 2022.

Source - https://github.com/ashutoshml/alleviating-inconsistency

vi

https://github.com/malllabiisc/DiPS
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/nlaugmenter/transformations/diverse_paraphrase
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/nlaugmenter/transformations/diverse_paraphrase
https://github.com/malllabiisc/SGCP
https://github.com/ashutoshml/alleviating-inconsistency


Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis v

Softwares released based on this Thesis vi

Contents vii

List of Figures x

List of Tables xii

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Constraints in Paraphrase Generation . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Consistency in Paraphrase Detection . . . . . . . . . . . . . . . . . . . . 4

1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Human Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Science Journalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Advertisement Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Claim Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Plagiarism Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

vii



CONTENTS

2 Background 10

2.1 What is a Paraphrase? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Technical Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 NLP Sequence Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Sequence Decoding/Generation . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Representative Subset Selection . . . . . . . . . . . . . . . . . . . . . . . 21

3 Diverse Paraphrase Generation 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Monotone Submodular Objectives . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Model Details - Seq2Seq Models . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.4 Baseline (DPP) - Determinantal Point Processes . . . . . . . . . . . . . . 38

3.3.5 Baseline (SSR) - Subset selection via Simultaneous Sparse Recovery . . . 38

3.3.6 Intrinsic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.7 Extrinsic Evaluation via Data-Augmentation . . . . . . . . . . . . . . . . 40

3.3.8 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Intrinsic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Syntax-Guided Paraphrase Generation 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 SGCP: Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Semantic Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Syntactic Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 Syntactic Paraphrase Decoder . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



CONTENTS

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Methods Compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.4 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 SGCP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Semantic Preservation and Syntactic transfer . . . . . . . . . . . . . . . . 64

4.4.2 Syntactic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.3 SGCP-R Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.4 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.5 Limitations and Future directions . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Consistency in Paraphrase Detection 70

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.3 Recall Error Types in Qualitative Analysis . . . . . . . . . . . . . . . . . 79

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Summary, Conclusions and Future Work 82

6.1 Diversity in paraphrase generation . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Syntacticality in paraphrase generation . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Consistency in paraphrase detection . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography 86

ix



List of Figures

1.1 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Recurrent Neural Networks. Illustration inspired by Christopher Olah [23]. . . . 15

2.2 Single Unit of an LSTM and a GRU. Illustration inspired by Christopher Olah

[23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Sequence to Sequence based Attention Model Architecture. Please refer to Equa-

tion 2.5 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Overview of DiPS during decoding to generate k paraphrases. At each time

step, a set of N sequences (V (t)) is used to determine k < N sequences (Y ∗) via

submodular maximization . The above figure illustrates the motivation behind

each submodular component. Please see Section 3.2 for details. . . . . . . . . . . 31

3.2 Comparison of accuracy scores of two paraphrase recognition models using differ-

ent augmentation schemes (Quora-PR). Both LogReg and SiameseLSTM achieve

the highest boost in performance when augmented with samples generated using

DiPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Effect of varying the trade-off coefficient λ in DiPS on BLEU score for quora

dataset. Please see Section 3.4.3 for details. . . . . . . . . . . . . . . . . . . . . 45

3.4 Effect of varying the trade-off coefficient λ in DiPS on BLEU score for twitter

dataset. Please see Section 3.4.3 for details. . . . . . . . . . . . . . . . . . . . . 45

3.5 Effect of varying the trade-off coefficient λ in DiPS on various diversity metrics

on the Quora dataset. Please see Section 3.4.3 for details. . . . . . . . . . . . . 46

3.6 Effect of varying the trade-off coefficient λ in DiPS on various diversity metrics.

Please see Section 3.4.3 for details. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Effect of varying the trade-off coefficient λ in DiPS for individual combinations

of submodular components - twitter dataset. Please see Section 3.4.3 for details. 47

x



LIST OF FIGURES

4.1 Architecture of SGCP (proposed method). SGCP aims to paraphrase an input

sentence while conforming to the syntax of an exemplar sentence (provided along

with the input). The input sentence is encoded using the Sentence Encoder

(Section 4.2.2) to obtain a semantic signal ct. The Syntactic Encoder (Section

4.2.3) takes a constituency parse tree (pruned at height H) of the exemplar

sentence as an input and produces representations for all the nodes in the pruned

tree. Once both of these are encoded, the Syntactic Paraphrase Decoder (Section

4.2.4) uses pointer-generator network, and at each time step takes the semantic

signal ct, the decoder recurrent state st, embedding of the previous token and

syntactic signal hZt to generate a new token. Note that the syntactic signal

remains the same for each token in a span (shown in the figure above curly

braces; please see Figure 4.2 for more details). The gray-shaded region (not part

of the model) illustrates a qualitative comparison of the exemplar syntax tree

and the syntax tree obtained from the generated paraphrase. Please refer to

Section 4.2 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 The constituency parse tree serves as an input to the syntactic encoder (Section

4.2.3). The first step is to remove the leaf nodes which contain meaning repre-

sentative tokens (Here: What is the best language ...). H denotes the height to

which the tree can be pruned and is an input to the model. Figure (a) shows

the full constituency parse tree annotated with vector a for different heights.

Figure (b) shows the same tree pruned at height H = 3 with its corresponding a

vector. The vector a serves as an signalling vector (Section 4.2.4) which helps in

deciding the syntactic signal to be passed on to the decoder. Please refer Section

4.2 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Impact of reordering an example input pair (X and Y ) on standard fine-tuned

BERT and BERT-with-consistency-loss . The pair are true paraphrases.

and denote that the model predicted them to be paraphrases and not-

paraphrases, respectively. Confidence scores are reported in brackets. Details in

Section 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 BERT-with-consistency-loss. We use an additional classification token: [CLSPara]

for our input, upon which the consistency objective is applied. Please refer to

Section 5.2.2 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xi



List of Tables

3.1 Sample paraphrases generated by Beam search and our method. It can be seen

that our approach offers lexically diverse paraphrases without compromising on

fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Dataset Statistics for Paraphrase Generation, and Data Augmentation Tasks

(Detection and Classification). Please see Section 3.3.1 . . . . . . . . . . . . . . 36

3.3 Hyper-parameter settings for DiPS . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Results on Quora-Div and Twitter dataset. Higher↑ BLEU and METEOR

score is better whereas lower↓ TERp score is better. Please see Section 3.4 for

details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Results on Quora-Div and Twitter dataset. Higher distinct scores imply better

lexical diversity. Please see Section 3.4 for details. . . . . . . . . . . . . . . . . . 42

3.6 Accuracy scores of two classification models on various data augmentation schemes.

Please see Section 3.4 for details . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Results of ablation testing at fixed λ = 0.7 - Twitter Dataset. Please see Section

3.4.3 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Sample syntactic paraphrases generated by SCPN [58], CGEN [20], SGCP

(Ours). We observe that SGCP is able to generate syntax-conforming para-

phrases without compromising much on relevance. . . . . . . . . . . . . . . . . . 50

4.2 Results on QQP and ParaNMT-small dataset. Higher↑ BLEU, METEOR (MET.),

ROUGE (R-) and PDS is better whereas lower↓ TED score is better. SGCP-R

selects the best candidate out of many, resulting in a performance boost for se-

mantic preservation (shown in box). We bold the statistically significant results

of SGCP-F, only, for a fair comparison with the baselines. Note that Source-

as-Output and Exemplar-as-Output are only dataset quality indicators and not

competitive baselines. Please see Section 4.4 for details. . . . . . . . . . . . . . . 61

xii



LIST OF TABLES

4.3 Sample generations of the competitive models. Please refer to Section 4.4.5 for

details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 A comparison of human evaluation scores for comparing the quality of para-

phrases generated using all models. A higher score is better. Please refer to

Section 4.4.1 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Sample SGCP-R generations with a single source sentence and multiple syntactic

exemplars. Please refer to Section 4.4.4 for details. . . . . . . . . . . . . . . . . 65

4.6 Sample generations with different levels of syntactic control. S and E stand for

source and exemplar, respectively. Please refer to Section 4.4.2 for details. . . . 66

4.7 Comparison of different syntactically controlled paraphrasing methods. Please

refer to Section 4.4.4 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Datasets Statistics. Please refer to Section 5.3. . . . . . . . . . . . . . . . . . . 72

5.2 Parts (A) & (B): L2R and R2L Prediction and Confidence Consistency. Part

(C) Classification Metrics. (*-BASE) indicate , (*- W/ *) indicate .

Higher Accuracy, Higher Pearson Correlation and lower MSE are better. Num-

bers in bold are statistically significant. Underlined numbers are better on

average than baselines. Please refer to Section 5.4.1 for a discussion. . . . . . . . 75

5.3 Sample pairs which are classified differently by the fine-tuned model based on

their input order in the standard classification setting in each of the paraphrase

dataset. Please refer Section 5.1, Section 5.2.2 for details. . . . . . . . . . . . . . 78

5.4 Recall errors in QQP, MRPC & PAWS: BERT ( ) and BERT with JS ( ).

Please refer to Section 5.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Summary of problems and approaches presented in this thesis. . . . . . . . . . . 83

xiii



“It is difficult to reconstruct what it was that took us years, long hours of discussion, endless

exchanges of drafts and hundreds of e-mails negotiating over words, and more than once

almost giving up. But this is what always happens when a project ends reasonably well: once

you understand the main conclusion, it seems it was always obvious.”

- Daniel Kahneman

Thinking, Fast and Slow [62]
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Chapter 1

Introduction

A paraphrase is a restatement (Y) of the meaning of a text or passage (X) using other words.

For example, the sentence ‘Giraffes like Acacia leaves and hay and they can consume 75 pounds

of food a day.’ is a paraphrase of the text ‘A giraffe can eat up to 75 pounds of Acacia leaves and

hay every day.’ [51] The two sentences differ in three ways. Firstly, the text uses the singular

‘a giraffe’ while the paraphrase generalizes it to the plural ‘giraffes’. Then, the text specifies

‘up to 75 pounds’ whereas the paraphrase mentions ‘75 pounds’. Finally, the text refers to

the ability of a giraffe to eat Acacia leaves (expressed through ‘can eat’ ) while the paraphrase

conveys a giraffe’s ‘liking’ for the leaves. It follows that there is no unique paraphrase Y of

a text X, although X and Y are expected to be semantically similar. As a result, linguistics

accepts a more pragmatic definition of paraphrases known as ‘quasi-paraphrases ’. Bhagat and

Hovy [13] provide a comprehensive list of definitions for quasi-paraphrases.

Paraphrases are often used in the context of describing something in ‘one’s own words’.

This is a technique commonly employed by humans to serve multiple functions. For example,

a student who is asked to testify about their understanding of a theoretical concept may para-

phrase what they have read in a book. Upon reading or listening to the paraphrase, the teacher

is able to validate if the student has understood the concept. Similarly, when describing their

research to a layperson, a researcher may eliminate jargon while conveying key ideas. The lis-

tener, based on their understanding of the subject, will interpret the paraphrase. It is evident

that paraphrases are an important means of communication used to align a message with a

listener’s background knowledge.

Paraphrasing broadly refers to natural language processing (NLP) tasks related to para-

phrases. In the context of X and Y above, Y may simplify the complexity of X or summarise

the key content of X. In this thesis, we focus on two paraphrasing tasks: paraphrase generation

(i.e., generate Y from X) and paraphrase detection (i.e., predict if X and Y are semantically

2



similar). Paraphrasing finds applications in areas such as text simplification, conversation

agents, abstractive summarisation, and more generally, data augmentation.

This thesis improves paraphrase generation and detection models by demonstrating how

constraints can be induced in the former and consistency in the latter. In this chapter, we

first motivate the problems in paraphrase generation and detection. Following that, we present

the research statement of the thesis. In order to build a human-inspired view of the problems

involved in paraphrasing, we discuss two case studies of humans performing paraphrasing. We

then describe the contributions of the thesis.

1.1 Motivation

Deep learning models in NLP typically use sequential frameworks such as LSTMs and Trans-

formers. In the forthcoming subsections, we first describe the challenges faced by deep learning

models and then motivate the need for constraints in paraphrase generation and consistency in

paraphrase detection.

1.1.1 Challenges

Deep learning approaches in NLP often face the following challenges:

1. Deep learning models typically require a large volume of data (‘High Data Requirement’

in Section 1.1.2).

2. In the context of text generation, deep learning models are prone to producing degener-

ate, uninteresting, and often hallucinated outputs [61] (‘Poor Quality Output’ in Section

1.1.2).

3. Evaluation of NLG output via automated metrics or human evaluation is fraught with

errors. (discussed in Section 1.1.3).

We analyze each of these challenges in the subsequent sections.

1.1.2 Constraints in Paraphrase Generation

Paraphrase Generation may require constraints because of:

1. High Data Requirement: Conventional human-annotated paraphrase datasets are either

too small for model training, have limited variations, or are domain specific. For

instance, the Microsoft Research Paraphrase Corpus (MRPC) [31] is too small a dataset

for deep learning generation models, while Quora Question Pairs (QQP) 1, and ParaSCI

1https://www.kaggle.com/c/quora-question-pairs
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datasets [32] are domain-specific containing only questions and sentences extracted from

scientific articles respectively. Paraphrase Adversaries from Word Scrambling (PAWS)

[152] is built on top of QQP. Although it contains difficult examples for paraphrase and

non-paraphrase pairs, the variations provided by them are still limited. It is, therefore,

imperative to enable paraphrase generation models to produce diverse outputs using

these available datasets.

2. Poor Quality Output: Since many paraphrase pairs in the datasets (as in the case of

PAWS) contain only minor lexical variations, models built on top of them may generate

sentences with repeating phrases, and limited syntactical differences. This necessitates

the induction of constraints. Token and phrase-based constraints have been dealt with

in previous works [2, 50, 106]. However, the induction of syntax-based constraints has

been marginally explored and with limited quality.

1.1.3 Consistency in Paraphrase Detection

The motivation for consistency in paraphrase detection arises from natural language generation

(NLG). NLG models are often evaluated either by computing metrics based on word overlap be-

tween X and Y or via human evaluation. While the former may result in incorrect conclusions,

the latter is cost-intensive. Paraphrase detection is a task that can automate the evaluation pro-

cess by predicting if the expected text X and the generated output Y are semantically similar.

However, semantic similarity is an equivalent relationship: X is similar to Y is the same as Y

is similar to X. Approaches for paraphrase detection so far do not account for this. Induction

of consistency in paraphrase detection aims to ensure that the equivalent relationship is

retained.

1.2 Research Question

The central research question of the thesis is:

“How can we constrain generation models, especially in NLP, to produce meaningful

outputs and utilize them for building better classification models?”

To address the question, the thesis considers three problems in paraphrasing: (a) Diver-

sity in paraphrase generation (this refers to the ‘constrain generation models’ part of the

research question), (b) Syntacticality in paraphrase generation (this refers to the ‘constrain

generation models’ part of the research question), and (c) Consistency in paraphrase de-

tection (this refers to the ‘meaningful outputs’ part of the research question). Figure 1.1
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summarises the scope of the thesis.

Paraphrasing

Constraints in
Paraphrase
Generation

▶ Diversity in Paraphrase
Generation [77]

▶ Syntacticality in Para-
phrase Generation [78]

Consistency
in Paraphrase

Detection

▶ Alleviating inconsistency
in pre-trained model [76]

Figure 1.1: Scope of this thesis

Goal: This thesis presents approaches to induce constraints in paraphrase generation and

consistency in paraphrase detection.

1.3 Human Perspective

While this thesis deals with automated approaches for paraphrase generation and detection as

elicited in the research statement, it is useful to understand how humans perform and benefit

from paraphrasing. Towards this, we present a related human perspective of paraphrasing.

When humans generate or detect paraphrases, they must often deal with constraints and con-

sistency. We demonstrate this through four case studies. For paraphrase generation, we use the

case study of science journalism and advertisement generation, while for paraphrase detection,

we describe claim verification and plagiarism detection.

1.3.1 Science Journalism

Science journalism [115] is a field that deals with converting scientific articles into easily compre-

hensible text that non-experts can consume. For example, in the context of machine learning, an

effort towards science journalism was made in the tenth International Conference on Learning

Representations (ICLR 22), called ICLR-Blog-Post-Track1. The main motive of science jour-

nalism is to disseminate accurate and jargon-free information about a scientific article to the

masses for inclusion and initiation of a healthy dialogue between society and science. Science

1https://iclr-blog-track.github.io/
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journalists face an increasing need to convey factually correct information through storytelling

techniques, like stylizing sentences in a way that taps the emotional and rational sides of their

audience. When writing an article catering to a general audience, a science journalist needs

to constrain their text such that it is accurate, easily comprehensible, personalized for each

demography, and engaging enough to achieve its objective.

While science journalism appears to be a paraphrasing task where a science journalist would

simplify a scientific article, it poses peculiar challenges. The audience’s demography needs to

be considered before wording a certain text. Even within the scientific community, scientists

from different areas find it difficult to engage in a healthy debate because of the lack of common

vocabulary. The literary proficiency of the audience also plays an important role. In a study

based on text simplification [121], it was observed that readers prefer sentences based on their

literary skills. For example, consider the pair of sentences: S1 Because it is raining today, you

should carry an umbrella. and S2: You should carry an umbrella today because it is raining.

While these are paraphrases of each other, it was found that fifth-grade readers preferred

sentence S2 where the cause follows the effect. In contrast, college students preferred sentence

S1 where the effect follows the cause.

Therefore, in most cases, it is helpful for science journalists to provide diverse (in terms

of style and detail) paraphrases for the same text so that it can target the right audience

appropriately.

1.3.2 Advertisement Generation

Advertisement Generation [19] is the art of creating taglines, slogans, and marketing messages

that sell a product or service. A well-crafted advertisement can attract potential customers,

build brand recognition, and increase sales. However, an ineffective or poorly designed adver-

tisement can lead to a loss of sales and damage the company’s reputation. It is important to

note that advertisements should be sensitive and catchy enough to attract potential customers

while also being truthful to the product catalogue. This truthfulness implies that the tagline

must be a near-paraphrase of a specific component of the product catalogue.

For example, consider the following two slogans: “Buy our colorful shoes now! They are

the best” and “Experience comfort at your feet, step up your game and walk on cloud nine with

our shoes! Available in multiple colors! Buy now!” Although both advertisements have the

same intent, it is easy to see how the second slogan could appeal more to users. Advertisement

writing is a creative endeavor, and its authors need to consider the target demographic, market

sentiments, and authenticity.

In most cases, advertisers try to provide structurally different yet meaning-preserving text
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to target the right population appropriately.

1.3.3 Claim Verification

Claim verification is the task of assessing the trustworthiness of information in a text. For

example, social media posts during the COVID-19 pandemic often contained new information

about the infection. Considering the constantly evolving understanding of the infection, when

a post potentially contained information about COVID-19, several social media websites such

as Instagram and Facebook would automatically add a tag urging readers to verify the claims

made in the post separately. This is a case of paraphrase detection by humans.

Consider a social media post ‘Drinking turmeric milk reduces your chances of catching

COVID-19’. A user wanting to verify the claim in the post may use a search engine with

the keyphrases ‘turmeric milk’ and ‘COVID’. Based on their level of expertise, they may read

sources such as news articles or research papers. When they encounter a text in the source

related to the claim in the social media post, they would check if the two are paraphrases of each

other. If they are, the user would conclude that the claim is trustworthy. On a related note,

multi-lingual speakers can verify claims using sources from multiple languages. For example,

upon reading the code-mixed Hindi post ‘haldi doodh peene se COVID nahi hoga (drinking

turmeric milk will not give you COVID)’, a multilingual speaker may still search for English

terms ‘turmeric milk’ and ‘COVID’ to obtain English articles that are potentially related to

the claim.

When performing claim verification, a human reader may read articles from multiple sources.

Achieving consistency in paraphrase detection ensures that the reader arrives at the same

conclusion regarding the claim, irrespective of the sequence in which the articles are read.

1.3.4 Plagiarism Detection

Plagiarism detection [40] is a critical task in maintaining academic integrity and ensuring le-

gal compliance. It involves identifying instances where a section of text has been copied from

another source without appropriate attribution. This task is crucial for protecting intellectual

property rights and assessing the originality of work in academic settings. For instance, Tur-

nitin1 is a well-known software that is specifically designed to detect instances of text copying.

However, to assess the originality of an article, a human requires sufficient knowledge about

prior works and access to search engines. The typical approach involves analyzing key signals,

such as sudden changes in tone or phrasing, and verifying the text’s originality or attribution

through search engines in cases where non-original or paraphrased content is suspected.

1https://www.turnitin.com/
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Despite its importance, plagiarism detection is a labor-intensive and time-consuming task

that involves assessing the consistency of the two texts under consideration.

1.4 Contributions of the Thesis

Pertaining to the three problems (Section 1.2), we now describe our work in terms of major

findings and contributions to paraphrase generation and detection.

Inducing Diversity in Paraphrase Generation. The first problem deals with inducing

diversity in the task of paraphrasing. This problem has applications in data augmentation and

conversational agents. We find that previous paraphrasing approaches mainly focused on the

issue of generating semantically similar paraphrases while paying little attention to diversity.

In fact, most of the methods rely solely on top-k beam search sequences to obtain a set of

paraphrases. However, the resulting set often contains many structurally similar sentences.In

this work, we focus on the task of obtaining highly diverse paraphrases while not compromising

on paraphrasing quality. We provide a novel formulation of the problem in terms of monotone

submodular function maximization, specifically targeted to paraphrasing. Additionally, we

demonstrate the effectiveness of our method for data augmentation on multiple tasks such as

intent classification and paraphrase detection.

Inducing Syntacticality in Paraphrase Generation. We induce syntactical styles in

paraphrases via controlled text generation. Syntax-guided paraphrasing deals with generat-

ing paraphrases that follow a reference syntactic style. Such syntactically coherent paraphrases

find applications in tasks such as text simplification. Specifically, we look at problems where,

in addition to the input sentence to be paraphrased, the syntactic guidance is sourced from

a separate exemplar sentence. We find that prior works in syntax-guided paraphrasing have

only utilized limited syntactic information available in the parse tree of the exemplar sentence.

We address this limitation in the paper and propose Syntax Guided Controlled Paraphraser

(SGCP), an end-to-end framework for syntactic paraphrase generation. We find that SGCP

can generate syntax-conforming sentences without compromising relevance. We perform ex-

tensive automated and human evaluations over multiple real-world English language datasets

to demonstrate the efficacy of SGCP over state-of-the-art baselines. In addition to these ap-

proaches, we also present a dataset: QQP-POS. This is a subset of the human-curated dataset

- QQP, for syntactic paraphrase generation.

Inducing Consistency in Paraphrase Detection. Finally, we also show how consistency

can be introduced in paraphrase detection, which is modeled as a classification task. While fine-

tuning pre-trained models for downstream classification is the conventional paradigm in NLP,

task-specific nuances may not get captured in the resultant models. Specifically, for tasks that
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take two inputs and require the output to be invariant of the order of the inputs, we observed

inconsistencies in the predicted label or the confidence score. We propose a consistency loss

function to alleviate inconsistency in symmetric classification. Our results show an improved

consistency in predictions for three paraphrase detection datasets without a significant drop

in the accuracy scores. Additionally, we examine the classification performance of three tasks

(both symmetric and non-symmetric) to showcase the strengths and limitations of our approach.

While these works address the research question via paraphrase generation and detection,

the approaches presented here apply broadly to NLP-based deep learning models that require

imposing constraints and ensuring consistency.

1.5 Organization of Thesis

The thesis is organized as follows. In Chapter 2, we discuss some definitions related to para-

phrases, highlight related works, and develop a technical background on sequence-to-sequence

architectures, pre-trained model (BERT), and some subset selection strategies. We then be-

gin Part 1 of the thesis by discussing a decoding time strategy for obtaining a diverse set of

paraphrases (Chapter 3) and then obtaining syntax-guided paraphrases via controlled-text gen-

eration (Chapter 4). In Part 2, we elucidate the inconsistencies in the pre-trained paraphrase

detection model and present an additional objective to alleviate the problems (Chapter 5).

Finally, we summarize the key contributions of this thesis in Chapter 6 followed by potential

future directions arising from this thesis.
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Chapter 2

Background

In this chapter, we aim to provide the necessary background material for the following chapters.

Given that the primary focus of this thesis is on paraphrases, we begin by defining what para-

phrasing entails. We then delve into some prior work on paraphrase generation and detection

before presenting technical details that will make it easier to understand the rest of the thesis.

2.1 What is a Paraphrase?

A paraphrase is a restatement (Y) of the meaning of a text or passage (X). The restatement

can include, but not be limited to:

(a) Lexical Variation: Lexical variation involves basic edit operations like replacement with

synonyms, swapping of words or phrases, insertion of informative content, and deletion of

redundant content. For example, the sentences ‘I don’t want this.’ and ‘I do not want this.’

are paraphrases of each other where word contraction pairs ‘don’t ’ and ‘do not ’ are used in the

place of each other.

(b) Semantic Variation: This is one of the primary requirements of a good paraphrase. The

meaning of the rearrangement should not deviate too much from the original sentence that

needs to be paraphrased. E.g., ‘I ate a fruit for breakfast ’ and ‘I consumed a fruit for breakfast ’

are paraphrases of each other because synonyms ‘ate’ and ‘consumed’ are used in place of each

other.

(c) Syntactic Variation: Changing the structure of the sentence while preserving meaning

refers to syntactic variation. The sentences ‘What is the height of the table’ and ‘What is the

table height ’ are syntactic variations. The first sentence uses a noun phrase, while the second

uses a noun compound.

(d) Pragmatic Variation: These refer to two sentences that may appear different on the
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surface but carry the same implied meaning or potential impact. For example, the sentences

‘Can you please get me some water? ’ and ‘Get me some water! ’ are paraphrases for each other

since the listener is expected to fetch water in both scenarios.

The concept of pragmatics encompasses bidirectional or two-way entailment between two

sentences. If two sentences entail each other, they convey the same meaning. The only exception

to this rule is the scenario where the two sentences are identical. In that case, they are not

considered paraphrases.

Although the definition of paraphrases requires strict equivalence of semantics, linguistics

accepts a more pragmatic alternative, allowing broader and approximate equivalence. Infor-

mally, this entails acceptance of more examples or “quasi-paraphrases”. However, because of the

approximation, it is not easy to put-down a single fully-explanatory definition of paraphrases.

Bhagat and Hovy [13] provide a comprehensive list of definitions for these “quasi-paraphrases”.

We state some example “quasi-paraphrase”-pairs (X, Y) below.

1. Text Simplification

(a) X: The conference will be held in the main auditorium of the university, which is

located on the west side of campus.

(b) Y: The meeting is at the university’s big hall on the west side of campus.

2. Intentions in Conversational Agents

(a) X: Kindly elucidate your statement for me.

(b) Y: What do you mean?

3. Active-Passive Voice with External knowledge

(a) X: Animal Farm was written by George Orwell.

(b) Y: George Orwell who was born in the Bengal Presidency, British India, wrote the

Animal Farm.

4. Summarization

(a) X: The film was widely praised by critics for its visually impressive cinematography

and the storyline that kept viewers engaged.

(b) Y: The movie received critical acclaim for its stunning cinematography and com-

pelling storyline.
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5. Approximate Numerical Equivalences

(a) X: Disneyland is 32 miles from here.

(b) Y: Disneyland is around 30 minutes from here.

The above examples are utilized in different contexts depending on various factors such as

the audience’s demographic and preferences.

In the rest of the thesis, we will refer to all such “quasi”-variations as Paraphrases. Like the

above examples, we have taken the broader, pragmatic, and ubiquitously accepted definition(s)

of paraphrases.

We now discuss some prior works in context of paraphrase generation and detection, highlight

the strengths and the shortcomings of the related approaches, before building the necessary

technical foundations essential for understanding the rest of this thesis.

2.2 Related Work

Paraphrasing a given sentence is an important problem and numerous approaches have been

proposed to address it. Recently sequence-to-sequence based data-driven deep learning models

have been proposed, which try to address the limitations of earlier traditional rule-based [98]

methods. Prakash et al. [107] employ residual connections in LSTM to enhance the traditional

sequence-to-sequence model. Gupta et al. [45] provide a variational auto-encoder (VAE) [65]

based framework to improve the quality of generated paraphrases. Li et al. [86] propose a rein-

forcement learning based model which uses pointer-generator [116] for generating paraphrases

and an evaluator based on [104] to penalize non-paraphrastic generations. Several other works

[17, 58] exist for paraphrasing, though they have either been superseded by newer models or

are not directly applicable to our settings. However, most of these methods focus on the issue

of generating semantically similar paraphrases, while paying little attention to diversity.

Diversity in paraphrasing models was first explored by [45] where they propose to

generate variations based on different samples from the latent space in a deep generative frame-

work. Although diversity in paraphrasing models has not been explored extensively, methods

have been proposed to address diversity in other NLP tasks [83, 82, 44]. Diverse beam search

proposed by [133] generates k-diverse sequences by dividing the candidate subsequences at each

time step into several groups and penalizing subsequences which are similar to prior groups.

The most relevant to our approach is the method proposed by [124] for neural conversation

models where they incorporate diversity by using DPP to select diverse subsequences at each

time step. Although their work is addressed in the scenario of neural conversation models, it

could be naturally adapted to paraphrasing models and thus we use it as a baseline.
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Submodular functions have been applied to a wide variety of problems in machine learn-

ing [56, 60, 71, 69] and have recently attracted much attention in several NLP tasks including

document summarization [90], data selection in machine translation [67] and goal-oriented chat-

bot training [30]. However, their application to sequence generation is largely unexplored.

Data augmentation is a technique for increasing the size of labeled training sets by leverag-

ing task-specific transformations which preserve class labels. While the technique is ubiquitous

in the vision community [72, 110], data augmentation in NLP is largely under-explored. Most

current augmentation schemes involve thesaurus-based synonym replacement [151, 140], and

replacement by words with paradigmatic relations [68]. Both of these approaches try to boost

the generalization abilities of downstream classification models through word-level substitu-

tions. However, they are inherently restrictive in terms of the diversity they can offer. Our

work offers a data-augmentation scheme via high-quality paraphrases.

Controllable Text Generation is an important problem in NLP which has received sig-

nificant attention in recent times. Prior works include generating text using models conditioned

on attributes like formality, sentiment or tense [52, 119, 149] as well as on syntactical templates

[58, 20]. These systems find applications in adversarial sample generation [58], text summa-

rization, and table-to-text generation [105]. While achieving state-of-the-art in their respective

domains, these systems typically rely on a known finite set of attributes thereby making them

quite restrictive in terms of the styles they can offer.

Paraphrase generation. While the generation of paraphrases has been addressed in the

past using traditional methods [98, 10, 108, 47, 153, 95, 145], they have recently been superseded

by deep learning-based approaches [107, 45, 88, 87, 77]. The primary task of all these methods

[107, 46, 87] is to generate the most semantically similar sentence and they typically rely on

beam search to obtain any kind of lexical diversity. Kumar et al. [77] try to tackle the problem

of achieving lexical, and limited syntactical diversity using submodular optimization but do not

provide any syntactic control over the type of utterance that might be desired. These methods

are therefore restrictive in terms of the syntactical diversity that they can offer.

Controlled Paraphrase Generation. Our task is similar in spirit to Iyyer et al. [58], Chen

et al. [20], which also deals with the task of syntactic paraphrase generation. However, the

approach taken by them is different from ours in at least two aspects. Firstly, SCPN [58] uses

attention [6] based pointer-generator network [116] to encode input sentences and a linearised

constituency tree to produce paraphrases. Due to the linearization of the syntactic tree, a lot of

dependency-based information is generally lost. Our model, instead, directly encodes the tree

structure to produce a paraphrase. Secondly, the inference (or generation) process in SCPN is

computationally very expensive, since it involves a two-stage generation process. In the first
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stage, they generate full parse trees from incomplete templates, and then from full parse trees

to final generations. In contrast, the inference in our method involves a single-stage process,

wherein our model takes as input a semantic source, a syntactic tree and the level of syntactic

style that needs to be transferred, to obtain the generations. Additionally, we also observed

that the model does not perform well in low-resource settings. This, again, can be attributed

to the compounding implicit noise in the training due to linearised trees and the generation of

full linearised trees before obtaining the final paraphrases.

Chen et al. [20] propose a syntactic exemplar-based method for controlled paraphrase gen-

eration using an approach based on latent variable probabilistic modeling, neural variational

inference, and multi-task learning. This, in principle, is very similar to Chen et al. [21]. As

opposed to our model which provides different levels of syntactic control of the exemplar-based

generation, this approach is restrictive in terms of the flexibility it can offer. Also, as noted

in Shi et al. [120], an auto-encoder-based approach might not offer rich enough syntactic in-

formation as offered by actual constituency parse trees. Additionally, VAEs [66] are generally

unstable and harder to train [15, 46] than seq2seq-based approaches.

Pre-trained Classification Models like BERT [28], and RoBERTa [91] are typically fine-

tuned for classification tasks using a low-capacity neural network classifier connected to the

pre-trained model on its first token (typically [CLS] token). We demonstrate the inconsistency

in the case of symmetric classification tasks for pairs of inputs, depending on the order of inputs.

To the best of our knowledge, this is the first work that incorporates task-specific nuances to

ensure consistency in symmetric classification.

Consistency Loss has been used in style transfer tasks to minimize the distance between

round-trip generation of candidates for image-to-image translation [155] or text style trans-

fer [53]. In a similar vein, we apply consistency loss (formulated as either the Kullback-Leibler

or the Jensen-Shannon divergence loss) to alleviate the inconsistency problem in symmetric

tasks.

Embedding-based Semantic Similarity Scores based on BERT-based models like

SBERT [111, 130] can map surface form realizations to embeddings. Their performance is

worse than directly using BERT-style cross-encoder models for tasks such as semantic simi-

larity [130]. However, the primary aim of such embedding-based scorers is orthogonal and, at

best, complementary to the goal of our work since we want to ensure high-performing, con-

sistent classifiers. Similarly, an alternative for symmetric classification is to separately obtain

predictions for (X, Y ) and (Y , X), and then average the confidence scores during test time.

But, this is a weakly grounded, heuristic-driven approach. In general, averaging does not rectify

the mistakes made by the model, only masks it.
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2.3 Technical Fundamentals

We now describe some technical fundamentals for understanding the methods presented in the

thesis. Specifically, we first present NLP sequence frameworks that are used in approaches

in this thesis. We then discuss the broad categorization of decoding approaches. Following

that, we describe the notions of representative subset selection through submodularity and

determinantal point processes.

2.3.1 NLP Sequence Frameworks

Recurrent Neural Networks: To model sequential information, recurrent neural networks

(RNN) were one of the first neural network structures to be invented. As the name suggests,

they are standard neural networks with a time-based looping. The output from the previous

time-step acts as an input to the next time step, and an RNN allows persistence of information

across time. One of the best ways to understand the workings of an RNN, is through unrolling

the RNN module across time-steps as seen in Figure 2.1a.
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(a) Recurrent Neural Network - Rolled (left) and
Unrolled (right) version. Please refer to Equation
2.1 for details.
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details.

Figure 2.1: Recurrent Neural Networks. Illustration inspired by Christopher Olah [23].

As with any neural network, the states (ht) and inputs (xt) are passed through layers of

linear maps and non-linearity. The final equations for obtaining the output yt are:

ht = g1(Uxt + V ht−1 + b1)

yt = g2(Wht + b2),
(2.1)

where g1, g2 are activation functions (non-linearities) and U, V,W, b1, b2 are the learnable weights

that are shared temporally. ht and yt are the RNN hidden states and output vectors, respec-

tively. This type of modelling results in the possibility of processing inputs of variable lengths,
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while being parameter efficient. However, the main drawback of this system is that the model

has difficulty accessing information from distant past (also termed long-term dependency prob-

lem - due to vanishing gradients) and, in its vanilla formulation, does not consider any future

input information for building the current state.

One simple approach to address the absence of future input data in an RNN is to utilize a

Bidirectional RNN or BiRNN. (BiRNN)(Figure 2.1b).

The following are the equations that govern a Bidirectional RNN:

hft = g1(Uxt + Vfh
f
t−1 + bf )

hbt = g1(Uxt + Vbh
b
t−1 + bb)

ht = hft ⊕ hbt
yt = g2(Wht + b2),

(2.2)

where g1, g2 are activation functions (non-linearities), U, Vf , Vb,W, bb, bf , b2 are the learnable

weights that are shared temporally and⊕ is the concatenation operator. hbt , h
f
t are the backward

and forward hidden states, respectively. ht is a concatenation of hbt , h
f
t and yt is the output

vector similar to a vanilla RNN.

To overcome the drawback of long-term dependency, Hochreiter and Schmidhuber [49] pro-

posed Long-short Term Memory (LSTMs) and Cho et al. [22] proposed Gated Recurrent Units

(GRUs) that introduce gates for allowing selective information to flow in an recurrent network.

LSTM/GRU: Long-short Term Memory builds on top of standard RNNs, and helps mitigate

long-term dependency problems. This, however, comes at the cost of heavier computation. The

following diagram (Figure 2.2a) illustrates one cell (one time-step) of an LSTM network.

The following are the equations that govern the computation in an LSTM:

ft = σ(Wf (ht−1 ⊕ xt) + bf )

it = σ(Wi(ht−1 ⊕ xt) + bi)

ot = σ(Wo(ht−1 ⊕ xt) + bo)

c̃st = tanh(Wo(ht−1 ⊕ xt) + bo)

cst = ft ⊙ cst−1 + it ⊙ c̃st
ht = ot ⊙ tanh(cst)

yt = g(Wht + b),

(2.3)
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Figure 2.2: Single Unit of an LSTM and a GRU. Illustration inspired by Christopher Olah
[23].

where g is an activation function, ⊙ is the Hadamard product operator, and ft, it and ot

serve as forget, input and output gates, respectively with the associated learnable weights

Wf , bf ,Wi, bi,Wo, bo that are shared temporally. cst is called the cell state, which allows for

selective long-term information flow. Like RNNs, ht, yt are the hidden representation, and

output representations, respectively, and Wt and b are the learnable weights.

Gated recurrent units (GRU) (Figure 2.2b) simplify the LSTM models while achieving similar

empirical results. In a GRU, the cell state is eliminated, thereby reducing memory footprint

for storing the same.

The equations governing the computation of a GRU model are as follows:

rt = σ(Wr(ht−1 ⊕ xt) + br)

zt = σ(Wz(ht−1 ⊕ xt) + bz)

h̃t = tanh(Wh(xt ⊕ (rt ⊙ ht−1)) + bh)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t
yt = g(Wht + b),

(2.4)

where rt, zt are called the reset and update gates respectively and Wr, br,Wz, bz are their asso-

ciated learnable weights shared temporally. Like RNNs, ht, yt are the hidden representation,

and output representations, respectively, and Wt and b are the learnable weights.

Note that bidirectional versions of both GRU and LSTM are possible, and are referred to

as BiGRU and BiLSTM model, respectively, in the later chapters.
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In the first part of this thesis (Chapter 3, 4), we will primarily be focusing on sequence-to-

sequence (Seq2Seq networks or encoder-decoder networks) [128, 22] that take a text as input,

encode it into representational vectors (ht) and sequentially (auto-regressively) generated the

target text using a decoder network. We call the input as the source text and the expected

output as the target text. Each text comprises a sequence of tokens, which can either be

words or subwords [118].

In the second part (Chapter 5), we will only be considering the encoder-only model, specif-

ically BERT [28], and RoBERTa [91].

Attention in Sequence-to-Sequence Networks: Theoretically, a high-capacity RNN (or

GRU/LSTM) can carry all the information needed for a Seq2Seq generation task in its hidden

state(s). Pragmatically, however, such a system is difficult, if not impossible, to train. To allow

models to automatically (soft-)search for parts of a source text that are relevant to predicting a

target token, without having to explicitly form these parts as a hard segment, Bahdanau et al.

[6] proposed Attention-based RNNs.

Consider the following figure (Figure 2.3) for an encoder-decoder attention based model.

x0 x1 … xTx

̂yt+1

a

y0 y1 yt

Encoder Decoder

h0 h1 hTx

si−1
ci

ci

Figure 2.3: Sequence to Sequence based Attention Model Architecture. Please refer to Equation
2.5 for details.

We index encoder sequences using subscript j and the decoder sequences using subscript i. The

hidden states hj for the encoder are determined through the BiRNN equations (Equation 2.2).
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ci =
Tx∑
j=1

αijhj

αij =
exp(eij)∑Tx

k=1 exp(eik)

eij = a(si−1, hj),

(2.5)

where ci denotes the context vector useful for decoding token at time-step i, αij is the jth co-

ordinate of the softmax-vector that assigns soft signals (weights) to the encoder hidden state

representations hj. eij is the jth co-ordinate of the alignment vector that can be modeled using

any neural network a, or simply dot products [94].

Attention based models have been pivotal for capturing relevant information for the de-

coder; however the utility of the softmax-vectors αij as interpretable signals is still (2022) hotly

debated in the research community [59, 142].

Transformer Networks, and BERT Despite their promising advantage of addressing long-

term-dependency as well as aligning contextual information correctly, attention based gated

recurrent units suffer from slow training primarily due to non-parallelizability of the structure

across GPU nodes.

Transformer Network: To address the computational issues, Vaswani et al. [132] proposed

Transformer Networks. Transformer networks are, arguably, one of the most significant contri-

butions in the Deep learning research community. A vanilla transformer network is a Seq2Seq

network where both the encoder and the decoder use self-attention to encode inputs and gen-

erate relevant outputs.

Like traditional Seq2Seq models, the encoder takes the token-level vectorized representa-

tion of the source sequence as input, and the decoder (through training) learns to output the

tokenized representation of the target. Transformer networks remove the recurrence formula-

tion from the encoder and rely on self-attention. To capture time information Transformer

Networks typically use positional embeddings that are augmented (or added) with the token

representations.

Vaswani et al. [132] propose an elegant formulation of attention mechanism using dot prod-

ucts (called scaled dot product attention) of token key k ∈ Rdk , query q ∈ Rdq and values

v ∈ Rdv . In practice, the key, query, and value of all computable tokens are packed together in
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a matrix represented K,Q, V given below,

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

headi = Attention(QWQ
i , KW

K
i , V W

V
i )

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO,

(2.6)

where WQ
i ∈ Rdmodel×dq ,WK

i ∈ Rdmodel×dk ,W V
i ∈ Rdmodel×dv ,WO ∈ Rhdv×dmodel are the associated

learnable weights. And head represents one attention network. There are h such heads. We

combine multiple such heads to get a high capacity representation, which is then projected

back onto a lower dimensional subspace to give each token dmodel dimensional representation.

In practice, dk = dv = dmodel/h.

BERT: Using just the encoder component of the traditional transformer networks, Devlin

et al. [28] proposed Bidirectional Encoder Representations from Transformers (BERT). BERT

is designed to pre-train deep bidirectional representations from unlabeled text by jointly condi-

tioning on both the left and right context in all layers. As a result, the pre-trained BERT model

can be fine-tuned with just one additional output layer to create state-of-the-art models for a

wide range of tasks, such as question answering and language inference, without substantial

task-specific architecture modifications. We will look at this modification in Chapter 5.

2.3.2 Sequence Decoding/Generation

In this section, we will discuss the broad strategies for decoding using a Seq2Seq model or any

other Natural Language Generation (NLG) model. There are two main types:

A. Autoregressive Generation: The most conventional approach for obtaining outputs from

a decoder is through something called Autoregressive Generation. In this, the decoder utilizes

information obtained from the encoder as well as the previous sequentially generated tokens, to

produce a new token. Early works [131, 42, 136] showed that the order in which the tokens are

generated is critical for determining the best autoregressive sequence. However, owing to the

simplicity and intuitiveness of using the standard left-to-right order, they became ubiquitous.

The two main ordering schemes under autoregressive decoding are:

1. Monotonic Ordering: A pre-determined order of sequence generation, be it left-to-

right or right-to-left, is referred to as monotonic ordering. Mathematically, the modeling

objective is:

p(y|x) = p(y1|x)
n∏

i=2

p(yi|y<i,x),
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where y is the target sequence and x is the source sequence. yi are the tokens of the

target sequence y. Note that the ordering information is implicit in this formulation. It

is assumed that the best ordering of sequence to be generated is known.

2. Adaptive Non-Monotonic Ordering: In the most general cases, determining the order

of prediction of generated tokens helps obtain an optimal final sequence y. More formally,

the modeling objective for such an approach is:

p(y, z|x) = p(yz1|x)p(z1|yz1 ,x)
n∏

i=2

p(yzi |z<i, yz<i
x)p(zi|z<i, yz≤i

x),

where y is the target sequence, x is the source sequence and z determines the order

in which the target sequence should be decoded. yi, zj are the generated tokens, and

the positions (or order) at which they need to be placed in the sequence, respectively.

Although mathematically sound, determining the best order z using previously known

approaches is empirically challenging, especially in situations where the domain of the

data is not provided. The model must infer that adaptively from the data [75].

B. Non-Autoregressive Generation: These approaches decode multiple tokens in parallel

but under certain conditional-independent constraints. While being time-efficient, the genera-

tion quality of these approaches is lower compared to auto-regressive approaches. Most of the

work focusing on Non-Autoregressive approaches typically tries to alleviate the inaccuracies

introduced due to the conditional independence between tokens constraint.

Although pragmatic in their rights, we will only focus on Monotonic ordering in the first

part of the thesis. However, we should note that the work in this thesis is either independent

of the decoding strategy (DiPS: Chapter 3) or requires trivial changes in the way the output is

processed (SGCP: Chapter 4).

2.3.3 Representative Subset Selection

A foundation towards the DiPS model (Chapter 3) is the notion of subset selection. As the

name suggests, this involves selecting a subset of points from a larger set of data-points (called

the ground-set) such that the selected points can effectively describe or represent the data

collection.

More formally, given a set of points or data collection (ground set) V, the objective is to find

a subset of points X ⊂ V, such that X (argument set), represents the data collection. The

representation of data-collection is measured using a set function f : 2V → R, where 2V is the

power set of V - the domain of the function f . The extremely trivial case is of selecting all the
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points. However, we are interested in selecting a smaller set i.e., k = |X| ≪ |V|. Therefore,

the overall objective is a constrained maximization problem where we try to maximize the

functional value f under the cardinality constraint. We explore the fundamentals of two main

strategies involved in understanding that chapter.

(A) Submodular Functions

Let V be a set. The following are equivalent definitions of submodular set functions F :

2V → R:

• Definition 2.1 ∀X ⊂ Y ⊂ V and t /∈ Y: F(X ∪ t)− F(X) ≥ F(Y ∪ t)− F(Y)

• Definition 2.2 ∀X,Y ⊂ V: F(X ∪Y) + F(X ∩Y) ≤ F(X) + F(Y)

• Definition 2.3 ∀X ⊂ V and s, t ∈ V \ X, s ̸= t: F(X ∪ {s}) + F(X ∪ {t}) ≥ F(X ∪
{s, t}) + F(X)

Moreover, F : {0, 1}n → R is submodular if ∀i the discrete derivative: ∂iF(x) = F(x+ei)−F(x)

is non-increasing in x. It is interesting to note that submodular functions are in some sense

close to both, concave as well as convex functions [137, 70]. The definition given above is more

like the definition for concave function - non-increasing discrete derivative, while submodular

functions find more utility in function minimization akin to convex functions. In both, convex

and submodular minimization, exact polynomial-time algorithms exist. However, maximizing

a submodular function is NP-Hard (We discuss submodular maximization in details in Section

2.3.3).

It is natural to question: why is it possible to minimize submodular functions? While the

exact algorithms are more involved, it can be simply explained using the Lovász extension

Definition 2.4 (Lovász Extension) Assume F : {0, 1}n → R, the Lovász Extension, FL :

[0, 1]n → R is given as:

FL(x) =
n∑

i=0

αiF(Xi),

where x =
∑
αi1Xi

,
∑
αi = 1, αi ≥ 0 and ∅ = X0 ⊂ X1 ⊂ . . . ⊂ Xn.

It can be observed FL is an extension for F since FL(x) = F(x) for x ∈ {0, 1}n. An interesting

property of this extension is that FL is convex ⇔ F is submodular. We know that convex

functions can be minimized in polynomial time, using ellipsoid methods. Once the minimizer

for FL is obtained, we get a convex combination FL =
∑n

i=0 αiF(Ti) and one of the Ti is the

solution of the submodular function F(X).
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Based on the utility, theoretical underpinning, and computational-efficiency we describe two

such methods in the following subsections.

Selection through Submodular Optimization: As alluded to earlier, we are interested

in maximization of the overall functional value under the cardinality constraint. An important

subclass of submodular functions is that of Monotonic Submodular Functions [70], where

if we enlarge the argument set X, the functional value will never decrease. More formally,

Definition 2.5 (Monotonic function) A function f : 2V → R is called a monotonic function,

if ∀X ⊆ Y ⊆ V, f(X) ≤ f(Y)

Having defined monotonic functions, let us take a look at some examples of Monotonic Sub-

modular Functions.

1. Modular Functions. A class of functions where the inequalities characterizing the

submodularity (Definition 2.1) hold true with equality are defined as modular functions

i.e., ∀X ⊂ Y ⊂ V and t /∈ Y: F(X∪ t)−F(X) = F.(Y∪ t)−F(Y). They can always be

expressed in terms of summations over weight functions w : V→ R: F(X) =
∑

x∈Xw(x).

Moreover, submodularity in also preserved in the case of the composition of any concave

function h : R → R with a monotone modular function g : 2V → R. An example of

such a submodular function is F(X) = h ◦ g(X) =
√
|X|, where h(x) =

√
x, a known

concave function, and g is the cardinality function counting the elements in set X, which

is a monotone modular function.

2. Weighted Coverage. A class of submodular functions is weighted coverage functions.

Consider a universal set U, a non-negative submodular function (may or may not be

monotone) G : 2U → R, and V as a collection of subsets of U. Now, for any subcollection,

X ⊆ V, the following function is monotone submodular.

F(X) := G

(⋃
v∈X

v

)
=

∑
u∈

⋃
v∈X v

w(u) (2.7)

where w : U→ R+ is a non-negative weight function for G. Note that F(X) is monotone

⇔ G is monotone, and F(X) is a submodular function for any arbitrary submodular

objectives G.

We will primarily look at a modification of the scoring of the candidates in the decoding ob-

jective of our sequence-to-sequence models, such that they satisfy the submodular and mono-

tonicity conditions. This is done so that we can use a simple greedy approach to select a subset
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Algorithm 1: Greedy selection for submodular optimization (Cardinality constraint)

Input: Ground Set: V
Budget: k
Submodular Function: F

1 X← ∅
2 N ← V
3 while |X| < k do
4 x∗ ← argmaxx∈NF(X ∪ {x})
5 X← X ∪ {x∗}
6 N ← N \ {x∗}
7 end
8 return X

of candidates from our ground set.

Greedy Maximization of Monotone Submodular Functions Consider the following

problem:

argmax
X⊂V

F(X) s.t. |X| = k, (2.8)

where F is a monotonic-submodular function.

While the above problem is NP-Hard, it can be solved approximately. A simple approach for

solving the approximate maximization problem (in the case of the given cardinality constraint)

is a greedy algorithm (Refer Algorithm 1). This algorithm starts with an empty set X0 and

iteratively adds elements x which maximize the updated functional value F(Xi∪{x}) the most.

In other terms, find elements x s.t. F(Xi∪{x})−F(Xi) is maximized at each iteration i. More

formally,

Xi+1 = Xi ∪ {argmax
x

F(Xi ∪ {x})− F(Xi)}. (2.9)

This provides a good approximation to the optimal solution of the NP-Hard problem. This

is based on the following theorem due to Nemhauser et al. [101].

Theorem 2.1 (Nemhauser et al. [101]) Given a non-negative submodular monotone function

F : 2V → R+, and let {Xi}i≥0 be the greedily selected sets defined in Equation 2.9, and F(X∗) =

maxX:|X|≤k F(X). Then ∀k, l > 0,

F(Xl) ≥
(

1− e−
l
k

)
F(X∗) (2.10)

In particular, for l = k,F(Xk) ≥
(
1− 1

e

)
F(X∗)

Proof: Fix l and k. Let X∗ ∈ argmax{F(X) : |X| ≤ k}. In case the functional value F is
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maximized at size < k, we can always add elements in the resultant set X∗ such that |X∗| = k

since it will either increase the functional value or keep it the same. This is because F is a

monotonic function. Now, label the resultant points in X∗ arbitrarily, as {x∗1, . . . , x∗k}.
For a set function F : 2V → R,X ⊆ V, and e ∈ V, let ∆(e|X) := F(X ∪ {e}) − F(X). ∆ is

also called the discrete derivative. For i < l,

F(X∗) ≤ F(X∗ ∪Xi) (∵ F is a monotonic function) (2.11)

= F(X∗ ∪Xi)− F({x∗1, . . . , x∗k−1} ∪Xi)

+ F({x∗1, . . . , x∗k−1} ∪Xi)− . . .

+ F({x∗1 ∪Xi)− F(Xi)

+ F(Xi)

(Alternate terms cancel each other) (2.12)

= F(Xi) +
k∑

j=1

∆(x∗j |Xi ∪ {x∗1, . . . , x∗j−1}) (Rewriting previous equation) (2.13)

≤ F(Xi) +
∑
x∈X∗

∆(x|Xi) (∵ F is submodular) (2.14)

≤ F(Xi) +
∑
x∈X∗

(F(Xi+1)− F(Xi)) (∵ The greedy algorithm) (2.15)

≤ F(Xi) + k(F(Xi+1)− F(Xi))
(∵ k is the maximum size

and F is submodular)
(2.16)

F(X∗) ≤ F(Xi) + k(F(Xi+1)− F(Xi)) (2.17)

Re-arranging Equation 2.17, we get

F(X∗)− F(Xi) ≤ k(F(Xi+1)− F(Xi))

= k(F(Xi+1)− F(X∗) + F(X∗)− F(Xi))

F(X∗)− F(Xi) ≤ k(F(Xi+1)− F(X∗) + F(X∗)− F(Xi))

(2.18)

Let δi = F(X∗) − F(Xi), hence we have δi ≤ k(δi − δi+1). This implies that δi+1 ≤ (1 − 1
k
)δi.

Hence δl ≤ (1− 1
k
)lδ0, where δ0 = F(X∗)− F(∅) ≤ F(X∗)(∵ F is non-negative). We also know

that ∀x ∈ R, 1− x ≤ e−x. Therefore,

δl ≤ e−
l
kF(X∗) (2.19)

F(X∗)− F(Xl) ≤ e−
l
kF(X∗) (2.20)

F(Xl) ≥ (1− e−
l
k )F(X∗) (2.21)
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For the special case of l = k, F(Xk) ≥ (1− 1
e
)F(X∗) 2

(B) Determinantal Point Processes (DDP)

Another relevant subset selection strategy is obtained through Determinantal Point Processes

(DPP). Determinantal point processes are probabilistic models of configurations that favour

diversity [74]. A DPP offers a distribution over subsets of a fixed ground set. Aligned with

our goal of subset selection, in presence of negative correlations between elements of the set,

DPP offers an elegant, efficient and exact algorithm for sampling, marginalization, condition-

ing and other inference tasks. A DPP assigns higher probability to sets of items that are diverse.

Definition 2.6 (Kulesza et al. [74]) A point process P on a ground set V is a probability

measure over “point patterns” of V, which are finite subsets of V. In the discrete case, a point

process is simply a probability measure on the power set of V i.e., 2V. A sample from P might be

the empty set, the entirety of V, or anything in between. It is called a determinantal point

process if, when V is a random subset drawn according to P, we have, ∀X ⊆ V:

P(X ⊆ V) = det(KX) (2.22)

for some real, symmetric N ×N matrix K indexed by the elements of V. Here, KX ≡ [Kij]i,j∈A

denotes the restriction of K to the entries indexed by elements of X, and det(K∅) = 1

Since P is a probability measure, any principal minor of K must be non-negative. In other

words, K must be positive semi-definite.

Let us understand why a DPP favours diversity. K contains all the information needed to

compute the probability of any subset A ∈ V. If X = {i}, we have P(i ∈ V) = Kii i.e., the

diagonal entries of K gives the marginal probabilities of including individual elements of V. If

the element is 1 then it is almost always selected by the DPP. For a two-element set X = {i, j},

P({i, j} ∈ V) =

∣∣∣∣∣Kii Kij

Kji Kjj

∣∣∣∣∣
= KiiKjj −KijKji

= P(i ∈ V)

(2.23)

The off-diagonal elements determine the negative correlations between pairs of elements.

Large values of Kij imply that i, j tend to not co-occur. If we think of the entries of the matrix
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K as measurements of similarity between pairs of elements of V, the highly similar elements

are unlikely to appear together. If Kij =
√
KiiKjj, the i, j are “perfectly similar” and do not

appear together almost surely. However, if there is no correlation i.e., K is diagonal then the

elements appear independently. Note that DPPs cannot represent distributions where elements

are more likely to co-occur than if they were independent: correlations are always non-positive.

The efficient sampling strategy for determining a k-sized subset using DPP is described in

Kulesza and Taskar [73]. The resulting algorithm requires O(|V |k2) time overall.
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Part I

Inducing Constraints in Paraphrase

Generation
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Chapter 3

Diverse Paraphrase Generation

In this chapter, we focus on the task of generating highly diverse paraphrases while not com-

promising on paraphrasing quality.

3.1 Introduction

As stated earlier, paraphrase generation is the task of rephrasing a given text in multiple ways

such that the semantics of the generated sentences remain unaltered. Paraphrasing Quality can

be attributed to two key characteristics - fidelity which measures the semantic similarity be-

tween the input text and generated text, and diversity, which measures the lexical dissimilarity

between generated sentences.

Many previous works [107, 45, 86] address the task of obtaining semantically similar para-

phrases. While it is essential to produce paraphrases with high fidelity, it is equally important,

and in many cases desirable, to produce lexically diverse ones. Diversity in paraphrase gen-

eration finds applications in text simplification [102, 146], document summarization [84, 100],

QA systems [36, 12], data augmentation [151, 140], conversational agents [83] and information

retrieval [4]. Some examples for the above can be found in Section 2.1.

To obtain a set of multiple paraphrases, most of the current paraphrasing models rely

solely on top-k beam search sequences (Table 3.1). The resulting set, however, contains many

structurally similar sentences with only minor, word-level changes.

There have been some prior works [81, 34] which address the notion of diversity in NLP,

including in sequence learning frameworks [124, 133]. Although Song et al. [124] addresses

the issue of diversity in the scenario of neural conversation models using determinantal point

processes (DPP), it could be naturally used for paraphrasing. Along similar lines, subset

selection based on Simultaneous Sparse Recovery (SSR) [34] can also be easily adapted for the
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Source – how do i increase body height ?
Reference – what do i do to increase my height ?

Beam
Search

– how do i increase my height ?
– how do i increase my body height ?
– how do i increase the height ?
– how would i increase my body height ?

DiPS
(Ours)

– how could i increase my height ?
– what should i do to increase my height ?
– what are the fastest ways to increase my height ?
– is there any proven method to increase height ?

Table 3.1: Sample paraphrases generated by Beam search and our method. It can be seen that
our approach offers lexically diverse paraphrases without compromising on fidelity

same task.

Though these methods are helpful in maximizing diversity, they are restrictive in terms of

retaining fidelity with respect to the source sentence. Addressing the task of diverse paraphras-

ing through the lens of monotone submodular function maximization [41, 70, 5] alleviates this

problem and also provides a few additional benefits. Firstly, the submodular objective offers

better flexibility in terms of controlling diversity as well as fidelity. Secondly, there exists a

simple greedy algorithm for solving monotone submodular function maximization [101], which

guarantees the diverse solution to be almost as good as the optimal solution. Finally, many

submodular programs are fast and scalable to large datasets.

Below, we list the main contributions of this chapter.

1. We introduce Diverse Paraphraser using Submodularity (DiPS). DiPS maximizes a novel

submodular objective function specifically targeted toward paraphrasing.

2. We perform extensive experiments to show the effectiveness of our method in generat-

ing structurally diverse paraphrases without compromising on fidelity. We also compare

against several possible diversity-inducing schemes.

3. We demonstrate the utility of diverse paraphrases generated via DiPS as data augmenta-

tion schemes on multiple tasks such as intent and question classification.

We have made DiPS’s source code available at https://github.com/malllabiisc/DiPS

3.2 Methodology

Similar to Prakash et al. [107], Gupta et al. [45], Li et al. [86], we formulate the task of paraphrase

generation as a sequence-to-sequence learning problem. Previous Seq2Seq based approaches
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<sos>

 Where can I 
get that movie? 

 can 

Where can I get that film?

 I <eos>

How can I get that picture?

 : 3k Candidate Subsequences
 find            film?Where can I thatWhere can I

Where 
How 

can
can

I
I

that
that picture

picture
get

find

 get           movie?Where can IWhere can I that

k- sequences

Synonym (similar embeddings)

Diversity Components Fidelity Components

 where  ,  can  ,  film ,  I  ,   How , 
 find that  ,   that picture ,

  ..
  I get  ,   can I  ,  Where can I 

Rewards unique n-grams

Rewards Structural Coverage

Source Sentence

 Where 

ENCODER DECODER

n-gram overlaps
Y

Y

Y

Y

Y

  , X

  , X

Y
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Figure 3.1: Overview of DiPS during decoding to generate k paraphrases. At each time
step, a set of N sequences (V (t)) is used to determine k < N sequences (Y ∗) via submodular
maximization . The above figure illustrates the motivation behind each submodular component.
Please see Section 3.2 for details.

depend entirely on the standard cross-entropy loss to produce semantically similar sentences

and greedy decoding during generation. However, this does not guarantee lexical variety in

the generated paraphrases. To incorporate some form of diversity, most prior approaches rely

solely on top-k beam search sequences. The k-best list generated by standard beam search is

a poor surrogate for the entire search space [39]. In fact, most of the sentences in the resulting

set are structurally similar, differing only by punctuations or minor morphological variations.

While being similar in the encoding scheme, our work adopts a different approach for the

final decoding. We propose a framework that organically combines a sentence encoder with a

diversity-inducing decoder.
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Algorithm 2: DiPS

Input: Input Sentence: Sin

Max. decoding length: T
Submodular objective: F
No. of paraphrases required: k

1 Process Sin using the encoder of Seq2Seq
2 Start the decoder with input symbol sos
3 t← 0; P ← ∅
4 while t < T do
5 Generate top 3k most probable subsequences
6 P ← Select k based on argmaxY⊆V (t) F(Y) using Algorithm 1

7 t = t+ 1

8 end
9 return P

3.2.1 Overview

Our approach is built upon Seq2Seq framework. We first feed the tokenized source sentence

to the encoder. The task of the decoder is to take as input the encoded representation and

produce the respective paraphrase. To achieve this, we train the model using standard cross-

entropy loss between the generated sequence and the target paraphrase. Upon completion of

training, instead of using greedy decoding or standard beam search, we use a modified decoder

where we incorporate a submodular objective to obtain high-quality paraphrases. Please refer

to Figure 3.1 for an overview of the proposed method.

During the generation phase, the encoder takes the source sentence as input and feeds its rep-

resentation to the decoder to initiate the decoding process. At each time-step t, we consider N

most probable subsequences since they are likely to be well-formed. Based on the optimization

of our submodular objective, a subset of size k < N is selected and sent as input to the next

time step t+ 1 for further generation. The process is repeated until desired output length T or

<eos> token, whichever comes first.

3.2.2 Monotone Submodular Objectives

With the technical foundation of submodularity in subset selection(Section 2.3.3) in mind,

we introduce the formal notations and propose the modified decoding objective in terms of

submodular and modular functions.

Let X be a sentence to be paraphrased, Y be the set of selected/generated candidates and

Y ∈ Y be one such candidate subsequence. Note that at each time-step t, Y, and subsequently

Y , will be overwritten.
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We design a parameterized class of submodular functions tailored toward the task of para-

phrase generation. Let V (t) be the ground set of possible subsequences at time step t. We aim

to determine a set Y ⊆ V (t) that retains certain fidelity as well as diversity. Hence, we model

our submodular objective function as follows:

Y ∗ = argmax
Y⊆V (t)

F(Y) s.t. |Y | ≤ k (3.1)

where k is our budget (desired number of paraphrases) and F is defined as:

F(Y) = λL(Y, X) + (1− λ)D(Y) (3.2)

Here X is the source sentence, L(Y, X) and D(Y) measure fidelity and diversity, respectively.

λ ∈ [0, 1] is the trade-off coefficient. This formulation clearly brings out the trade-off between

the two key characteristics.

Fidelity

It is imperative to design functions that exploit the decoder search space to maximize the

semantic similarity between the generated and the source sentence. To achieve this we build

upon a known class of monotone submodular functions [126]

f(X) =
∑
i∈U

µiϕi(mi(Y)) (3.3)

where U is the set of features to be defined later, µi ≥ 0 is the feature weight, mi(Y) =∑
Y ∈Ymi(Y ) is non-negative modular function and ϕi is a non-negative non-decreasing concave

function. Based on the analysis of concave functions in [67], we use the simple square root

function as ϕ (ϕ(a) =
√
a) in both of our fidelity objectives defined below.

We consider two complementary notions of sentence similarity namely syntactic and seman-

tic. To capture syntactic information we define the following function:

L1(Y, X) = µ1

√√√√∑
Y ∈Y

N∑
n=1

βn |Yn-gram ∩Xn-gram| (3.4)

where |Yn-gram ∩Xn-gram| represents the number of overlapping n-grams between the source and

the candidate sequence Y for different values of n ∈ {1, . . . , N}(we use N = 3 ). Since longer

n-gram overlaps are more valuable, we set β > 1. This function inherently increases the BLEU

score between the source and the generated sentences.

33



We address the semantic aspect of fidelity by devising a function based on the word embed-

dings of source and generated sentences. We define embedding-based similarity between two

sentences as,

S(Y,X) =
1

|Y |
∑
wi∈Y

argmax
wj∈X

ψ(vwi
,vwj

) (3.5)

where vwi
is the word embedding for a token wi and ψ(vwi

,vwj
) is the gaussian radial basis

function (RBF)1. For each word in the candidate sequence Y , we find the best matching word

in the source sentence using word-level similarity. Using the above-mentioned measure for

embedding similarity we use the following submodular function:

L2(Y, X) = µ2

√∑
Y ∈Y

S(Y,X) (3.6)

This function helps increase the semantic homogeneity between the source and generated se-

quences. The above-defined functions (Equation 3.4, 3.6) are compositions of non-decreasing

concave functions and modular functions. Thus, staying in the realm of the class of mono-

tone submodular functions mentioned in Equation 3.3, we define fidelity function L(Y, X) =

L1(Y, X) + L2(Y, X)

Diversity

Ensuring high fidelity often comes at the cost of producing sequences that only slightly differ

from each other. To encourage diversity in the generation process it is desirable to reward

sequences with a higher number of distinct n-grams as compared to others in the ground set

V (t). Accordingly, we propose to use the following function:

D1(Y) = µ3

N∑
n=1

βn

∣∣∣∣∣ ⋃
Y ∈Y

Yn−gram

∣∣∣∣∣ (3.7)

For β = 1, D1(Y) denotes the number of distinct n-grams present in the set Y. Since shorter

n-grams contribute more towards diversity, we set β < 1, thereby giving more value to shorter

n-grams. It is easy to see that this function is monotone non-decreasing as the number of

distinct n-grams can only increase with the addition of more sequences. To see that D1(Y) is

submodular, consider adding a new sequence to two sets of sequences, one a subset of the other.

Intuitively, the increment in the number of distinct n-grams when adding a new sequence to

the smaller set should be larger than the increment when adding it to the larger set, as the

1We find gaussian RBF to work better than other similarity metrics such as cosine similarity
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distinct n-grams in the new sequence might have already been covered by the sequences in the

larger set.

Apart from distinct n-gram overlaps, we also wish to obtain sequence candidates that are not

only diverse but also cover all major structural variations. It is reasonable to expect sentences

that are structurally different to have a lower degree of word/phrase alignment as compared

to sentences with minor lexical variations. Edit distance (Levenshtein) is a widely accepted

measure to determine such dissimilarities between two sentences. To incorporate this notion of

diversity, a formulation in terms of edit distance seems like a natural fit for the problem. To

do so, we use the coverage function which measures the similarity of the candidate sequences

Y with the ground set V (t). The coverage function is naturally monotone submodular and is

defined as:

D2(Y) = µ4

∑
xi∈V (t)

∑
Yj∈Y

R(Yi, Yj) (3.8)

where R(Yi, Yj) is an alignment based similarity measure between two sequences Yi and Yj given

by:

R(Yi, Yj) = 1− EditDistance(Yi, Yj)

|Yi|+ |Yj|
(3.9)

Note that R(Yi, Yj) will always lie in the range [0, 1].

Evidently, this method allows flexibility in terms of controlling diversity and fidelity. Our goal

is to strike a balance between these two to obtain high-quality generations.

3.3 Experiments

3.3.1 Datasets

In this section, we outline the datasets used for evaluating our proposed method. We specify

the actual splits in Table 3.2. Based on the task, we categorize them into the following:

1. Intrinsic evaluation: To demonstrate the efficacy of our method on fidelity and di-

versity, we use the positive subset (pairs with the label=1, indicating that they are para-

phrases) of the existing Quora question pair 1 dataset, called Quora-Div and the existing

Twitter URL paraphrasing [79] dataset, referred to as just Twitter.

We additionally perform in-domain data augmentation for the task of paraphrase recog-

nition. For that, we augment sentences generated through different paraphrasing model

1https://www.kaggle.com/c/quora-question-pairs
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Dataset Task Train Val. Test Classes

Quora-Div Intrinsic 120K 20K 5K N/A
Twitter Intrinsic 100K 15K 3K N/A

Quora-PR Intrinsic 40K 10K 40K 2

Data augmentation

SNIPS Intent 10k 1k 700 7
Yahoo-L31 Intent 4K 1K 1K 2

TREC Question 1K 200 500 6

Table 3.2: Dataset Statistics for Paraphrase Generation, and Data Augmentation Tasks (De-
tection and Classification). Please see Section 3.3.1

as positive samples to the Quora-PR dataset. Quora-PR is a subset of Quora question

pair dataset which contains positive and negative examples.

2. Data augmentation: We exhibit the importance of samples generated through our

method on the task of Data augmentation using three existing datasets. SNIPS [26],

Yahoo-L31 1 is used for intent classification and TREC [85] is used for question classifi-

cation. Each dataset is balanced in terms of the number of samples per class.

3.3.2 Baseline

Several models have sought to increase diversity, albeit with different goals and techniques.

However, majority of the prior works in this area have focused on the task of producing diverse

responses in dialog systems [83, 113] and not paraphrasing. Given the lack of relevant baselines,

we compare our model against the following methods:

1. SBS: Decoder which performs standard beam search during generation.

2. DBS: An alternative of beam search to incorporate diversity. [133]

3. DPP (Section 3.3.4): Decoder based on Determinantal Point Processes [74]

4. SSR (Section 3.3.5): Decoder based on Subset Selection using Simultaneous Sparse Re-

covery [35]

We additionally evaluate against the following paraphrase generation models:

5. VAE-SVG: VAE-based generative framework for paraphrase generation. [45]

6. RbM: Deep Reinforcement learning based paraphrase generation model. [86]

1https://webscope.sandbox.yahoo.com/
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Note that the first four baselines are trained using the same Seq2Seq network and differ only

in the decoding phase.

3.3.3 Model Details - Seq2Seq Models

Parameter Value

Max grad norm 1.0

Batch size 16

Cell type LSTM

LSTM Layers (Depth) 2

Hidden size 256

Embedding size 300

Vocabulary size 20,000

Dropout None

Attention Model Luong-general

Bidirectional Encoder True

Max length 20

Learning Rate (Optimizer) 0.0002

Desired Paraphrases (k) 20

Table 3.3: Hyper-parameter settings for DiPS

Given a sequence of inputs X = (x1, . . . , xT ), where T is the input sequence length, the goal

of the sequence-to-sequence model is to estimate the conditional probability P(Y |X), where

Y is the corresponding output sequence Y = (y1, . . . , yT ′). The input sequence length T may

differ from the output sequence length T ′. We choose the attention model [94, 6], which

is based on the encoder-decoder framework proposed by [22, 128]. The encoder as well as the

decoder is modeled using a recurrent neural network (RNN). We use a Long-short term memory

unit (LSTM) [49] as it helps in learning problems with long-range temporal dependencies. The

encoder LSTM takes as input the tokens of the sentence whose paraphrase needs to be generated

and produces a sequence of encoder hidden states hi : i ∈ {1 . . . T}. At each time step, the

decoder receives the word embedding of the previous word, a decoder state st and the attention
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distribution is calculated using the weighted sum of encoder states:

ct =
T∑
i=1

αtihi, αti =
exp η(st−1, hi)∑T
j=1 exp η(st−1, hj)

to produce the corresponding paraphrase token y′t

3.3.4 Baseline (DPP) - Determinantal Point Processes

Consider the problem of sampling Y points from V associated with a similarity matrix K ∈
Rn×n, that is symmetric, real and positive semi-definite (PSD). Determinantal point processes

(DPP) [74] are elegant probabilistic models that capture negative correlation and help in effi-

cient sampling which follow the distribution given by:

P (Y ⊆ V ) = det(KY)

Assume the following q and ϕ functions:

q(Y,X) =
1

|Y |
∑
wi∈Y

argmax
wj∈X

ψ(vwi
,vwj

) (3.10)

ϕ(Yi, Yj) =
1

|Yi|
∑
wk∈Yi

argmax
wm∈Yj

ψ(vwk
,vwm) (3.11)

Note that X is the source sentence, Yi, Yj are generated candidates and wi, wj, wk, wm are

the tokens in the respective sentences, while v denotes the embeddings of those tokens. ψ is

the same as given in Equation 3.5. The most relevant construction of DPPs is not through

K but through L-ensembles kernel matrix [14, 73]. We calculate the matrix, L(Yi, Yj, X) =

q(Yi, X)ϕ(Yi, Yj)q(Yj) Note that this function is not symmetric. In order to make it symmetric

we operate on the final L-ensembles kernel matrix L = 1
2
(L + L⊤). We then use the sampling

algorithm described in Kulesza and Taskar [73] to select the k candidates.

3.3.5 Baseline (SSR) - Subset selection via Simultaneous Sparse Re-

covery

Consider the problem of finding k points from a collection of |V | = N data points which

preserve the essential characteristics of the set V = {v1, . . . , vN}. Assume that we can form a

non-negative dissimilarity matrix D ∈ RN×N such that each element dij is indicative of how

well a data point i is suited to be a representative of data point j. Elhamifar et al. [34] propose
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a method to select a subset of points from V that can well encode all the data points based on

the dissimilarity matrix D.

To do so, consider latent variables zij ∈ Z associated with dissimilarities dij. Each element zij

can be interpreted as the probability that data point i is a representative of j.They formulate the

problem as the following row-sparsity regularized trace minimization program on Z ∈ RN×N :

min tr(D⊤Z) + λ ∥Z∥1,q
s.t Z ≥ 0,1⊤Z = 1⊤, ∥Z∥1,∞ ≤ k

(3.12)

where k denotes the cardinality constraint, tr(·) denotes the trace operator, ∥Z∥1,q ≜
∑N

i=1 ∥zi∥q
and 1 denotes an all-one N -dimensional vector. A set of representative points can be obtained

by optimizing the above function and selecting indices corresponding to the non-zero rows of

the sparse matrix Z∗.

We start with selecting the top 3k most probable subsequences in each time step and then

we use sparse subset selection to select k diverse subsequences which are fed into the decoder

for the next time step. To use sparse subset selection we need to form a dissimilarity matrix

D. In contrast to DPP, the matrix need not be positive semi-definite. In addition, elements

dij, need not necessarily satisfy the triangle inequality, and the matrix D can be asymmetric as

well. We use an alternate formulation of Sparse subset selection [35] to select k-samples from

a given ground set:

min tr(D⊤Z)

s.t ∥Z∥1,∞ ≤ k, Z ≥ 0,1⊤Z = 1⊤,
(3.13)

We use the following equation to compute dissimilarity between two sequences:

Dij = 1− ϕ(Yi, Yj),

where ϕ is given through Equation 3.11.

3.3.6 Intrinsic Evaluation

It is important to recognize that assessing paraphrase generation models, as well as other natural

language generation models, involves several dimensions and has gained considerable attention

in recent times. Given its complexity, it is essential to evaluate all metrics in tandem rather

than treating them as independent entities.

1. Fidelity: To evaluate our method for the fidelity of generated paraphrases, we use
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three machine translation metrics which are suitable for paraphrase evaluation task [145]:

BLEU [103](upto bigrams), METEOR [8] and TER-Plus [122]. While all of these essen-

tially look at surface level forms, METEOR and TER-Plus encourage the use of synonym

replacements

2. Diversity: We report the degree of diversity by calculating the number of distinct n-

grams (n ∈ {1, 2, 3, 4}). The value is scaled by the number of generated tokens to avoid

favoring long sequences.

In addition to fidelity and diversity, we evaluate the efficacy of our method via accuracy by

using the generated paraphrases as augmented samples in the task of paraphrase recognition

on the Quora-PR dataset. We enrich the samples with DiPS generated samples. We perform

experiments with multiple augmentation settings for the following classifiers:

1. LogReg: Simple Logistic Regression model. We use the Tf-idf vectors as feature vectors

[96].

2. SiameseLSTM: Siamese adaptation of LSTM to measure quality between two sen-

tences [99]

We also perform ablation testing to highlight the importance of each submodular component.

3.3.7 Extrinsic Evaluation via Data-Augmentation

We evaluate the importance of using high-quality paraphrases for data-augmentation in two

downstream classification tasks, namely intent classification and question classification. Our

original generation model is trained on Quora-Div question pairs. Since the intent classification

and question classification contain questions, this setting seems like a good fit for performing

transfer learning. We perform experiments on the following standard classifier models:

1. LogRegDA: Simple logistic regression model trained using Tf-idf vectors as feature vec-

tors [96].

2. LSTM: Single layered LSTM classification model.

In addition to SBS and DBS, we use the following data augmentation baselines for comparison:

1. SynRep : Simple synonym replacement

2. ContAug: Data augmentation scheme based on replacing words with similar paradig-

matic relations. [68]

40



Quora-Div

Model BLEU↑ METEOR↑ TERp↓

SBS 33.1 28.2 55.6
DBS [133] 30.9 28.3 57.5

VAE-SVG [45] 33.4 25.6 63.2
RbM [86] 29.4 29.5 62.5

DPP 30.5 27.9 57.3
SSR 28.7 26.8 58.7

DiPS (Ours) 35.1 29.7 53.2

Twitter

Model BLEU↑ METEOR↑ TERp↓

SBS 51.1 23.5 67.9
DBS [133] 47.1 22.1 69.0

VAE-SVG [45] 46.7 25.2 67.1.
RbM [86] 47.7 29.3 68.7

DPP 44.8 21.4 71.4
SSR 41.3 20.0 74.4

DiPS (Ours) 55.3 30.1 63.5

Table 3.4: Results on Quora-Div and Twitter dataset. Higher↑ BLEU and METEOR score
is better whereas lower↓ TERp score is better. Please see Section 3.4 for details.

3.3.8 Setup

We train our Seq2Seq model with attention [6] for up to 50 epochs using the adam optimizer

[64] with an initial learning rate set to 2e-4. During the generation phase, we follow standard

beam search till the number of generated tokens is nearly half the source sequence length (token

level) to avoid possible erroneous sentences. We then apply submodular maximization stochas-

tically with probability p at each time step. Since each candidate subsequence is extended by

a single token at every time step, the information added might not necessarily be useful as our

submodular components work on the sentence level. This approach is time efficient and avoids

redundant computations.

For each augmentation setting, we randomly select sentences from the training data and gen-

erate their paraphrases. We then add them to the training data with the same label as that of

the source sentence. We evaluate the performance of different classification models in terms of

accuracy.
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Based on the formulation of the objective function, it should be clear that diversity would

attain maximum value at (or around) λ = 0 albeit at the cost of fidelity. This is certainly not

a desirable property for paraphrasing systems. To address this, we perform hyperparameter

tuning for λ value by analyzing the trade-off between diversity and fidelity based on varying λ

values. In practice, the diversity metric attains saturation at a certain λ range (usually 0.2 -

0.5).

3.4 Results

Our experiments were geared toward answering the following primary questions:

Quora-Div

Model 1-distinct 2-distinct 3-distinct 4-distinct

SBS 12.8 24.8 35.3 46.6
VAE-SVG [45] 15.8 22.5 27.6 31.8
DBS [133] 17.9 33.7 44.8 54.9

DPP 17.1 34.4 49.1 62.6
SSR 16.6 32.8 47.1 60.7

DiPS (Ours) 18.1 37.2 52.3 65.3

Twitter

Model 1-distinct 2-distinct 3-distinct 4-distinct

SBS 20.0 30.9 38.1 44.6
VAE-SVG [45] 19.3 28.2 33.3 37.2
DBS [133] 25.8 40.7 48.2 53.9

DPP 25.6 41.4 51.1 59.0
SSR 26.6 43.7 54.0 62.4

DiPS (Ours) 28.3 46.6 56.7 64.5

Table 3.5: Results on Quora-Div and Twitter dataset. Higher distinct scores imply better
lexical diversity. Please see Section 3.4 for details.

Q1. Is DiPS able to generate diverse paraphrases without compromising on fidelity? (Section

3.4.1)

Q2. Are paraphrase generated by DiPS useful in data augmentation? (Section 3.4.2)

Q3. How does varying λ affect the performance of DiPS? (Section 3.4.3)

Q4. How important are the different submodular objective components in DiPS? (Section

3.4.3)
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Figure 3.2: Comparison of accuracy scores of two paraphrase recognition models using different
augmentation schemes (Quora-PR). Both LogReg and SiameseLSTM achieve the highest boost
in performance when augmented with samples generated using DiPS

3.4.1 Intrinsic Evaluation

We compare our method against recent paraphrasing models as well as multiple diversity-

inducing schemes. DiPS outperforms these baseline models in terms of fidelity metrics namely

BLEU, METEOR, and TERp. A high METEOR score and a low TERp score indicate the

presence of not only exact words but also synonyms and semantically similar phrases. Notably,

our model is not only able to achieve substantial gains over other diversity-inducing schemes

but is also able to do so without compromising on fidelity. Diversity and fidelity scores are

reported in Table 3.5 and Table 3.4, respectively.

As described in Section 3.3.6, we evaluate the accuracy of paraphrase recognition models

when provided with training data augmented using different schemes. It is reasonable to ex-

pect that high-quality paraphrases would tend to yield better results on in-domain paraphrase

recognition tasks. We observe that using the paraphrases generated by DiPS helps in achieving

substantial gains in accuracy over other baseline schemes. Figure 3.2 showcases the effect of

using paraphrases generated by our method as compared to other competitive paraphrasing
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methods.

3.4.2 Data augmentation

LogRegDA LSTM

Model YahooL31 TREC SNIPS YahooL31 TREC SNIPS

NoAug 62.7 82.2 93.4 64.8 94.2 94.7
SBS 63.6 84.6 93.8 65.4 94.4 94.7
DBS 63.3 84.2 94.1 65.6 95.2 96.1

SynRep 63.7 85.2 93.9 65.3 93.6 95.5
ContAug 63.8 86.0 95.3 66.3 95.8 96.4

DiPS(Ours) 64.9 86.6 96.0 66.7 96.4 97.1

Table 3.6: Accuracy scores of two classification models on various data augmentation schemes.
Please see Section 3.4 for details

Data Augmentation results for intent and question classification are shown in Table 3.6.

While SBS does not offer much lexical variability, DBS offers high diversity at the cost of

fidelity. SynRep and ContAug are augmentation schemes that are limited by the number of

structural variations they can offer. DiPS on the other hand provides generation having high

structural variations without compromising on fidelity. The boost in accuracy scores on both

types of classification models is indicative of the importance of using high-quality paraphrases

for data augmentation.

3.4.3 Analysis

In this section, we perform extensive analysis to investigate the importance of the trade-off

coefficient λ and each of the submodular components.

(1) Importance of the trade-off coefficient λ

We conduct experiments with varying values of the trade-off coefficient λ to analyse the fidelity

performance of DiPS (Figure 3.3, Figure 3.4). As expected, we observe that the word-overlap

metric BLEU increases with the increase in λ values. This trend is consistent across both

datasets. We also evaluate the diversity using n-distinct metrics and observe that as λ decreases

or 1− λ increases the diversity increases (Figure 3.5, Figure 3.6). Overall there is a tradeoff in

the component and λ acts as a control knob that can be tweaked as per the user.

(2) Ablation Study

In this section, we highlight the importance of using each submodular component for the gen-

eration of high-quality paraphrases.
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Figure 3.3: Effect of varying the trade-off coefficient λ in DiPS on BLEU score for quora dataset.
Please see Section 3.4.3 for details.
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Figure 3.4: Effect of varying the trade-off coefficient λ in DiPS on BLEU score for twitter
dataset. Please see Section 3.4.3 for details.

(2.a.) Fixed λ: We fix the trade-off coefficient value at λ = 0.7 and provide BLEU and the

corresponding 2-distinct score for each of the component combinations (Table 3.7). D1 provides
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Figure 3.5: Effect of varying the trade-off coefficient λ in DiPS on various diversity metrics on
the Quora dataset. Please see Section 3.4.3 for details.

Figure 3.6: Effect of varying the trade-off coefficient λ in DiPS on various diversity metrics.
Please see Section 3.4.3 for details.
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higher diversity than D2, whereas L1 provides a marginally higher fidelity than L2.

Submodular Components BLEU 2-distinct

L1 +D1 48.7 48.0
L1 +D2 52.3 35.4
L2 +D1 46.0 46.5
L2 +D2 51.6 35.5

Table 3.7: Results of ablation testing at fixed λ = 0.7 - Twitter Dataset. Please see Section
3.4.3 for details.
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Figure 3.7: Effect of varying the trade-off coefficient λ in DiPS for individual combinations of
submodular components - twitter dataset. Please see Section 3.4.3 for details.

(2.b.) Varying λ: We also analyse the effect of λ for individual components of submodular

formulation. We vary the coefficient on the different combinations. As can be seen in Figure

3.7, while the fidelity components Li provide similar levels of performance gains, it is the

diversity component D1, that affects the diversity and therefore fidelity the most. Although, as

is expected, at higher levels of λ, both fidelity components are able to provide similar progressive

gains.
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3.5 Summary

In this chapter, we have proposed DiPS, a model which generates high-quality paraphrases by

maximization of a novel submodular objective function explicitly designed for paraphrasing.

In contrast to prior works focusing exclusively on fidelity or diversity, a submodular function-

based approach offers a significant degree of freedom to control fidelity and variety. Through

extensive experiments on multiple standard datasets, we have demonstrated the effectiveness

of our approach over numerous baselines. We observe that the diverse paraphrases generated

are not only interesting and meaning-preserving but are also helpful in data augmentation. We

showcase using multiple settings on the task of intent and question classification. We hope our

approach will impact paraphrase generation, and data-augmentation, and other NLG problems

in conversational agents and text summarization.
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Chapter 4

Syntax-Guided Paraphrase Generation

In the previous chapter, we introduced a diversity-driven mechanism for paraphrase generation.

It should be noted that although DiPS produces lexically diverse paraphrases, it might lack

syntactical variations.

The goal of this chapter is to fill in that gap and introduce a method for syntax-guided

paraphrase generation via controlled text generation. Given a sentence (e.g., “I like mangoes”)

and a constraint (e.g., sentiment flip), the goal of controlled text generation is to produce a

sentence that adapts the input sentence to meet the requirements of the constraint (e.g., “I

hate mangoes”). Going beyond such simple constraints, recent works have started exploring the

incorporation of complex syntactic guidance as constraints in the task of controlled paraphrase

generation. In these methods, syntactic guidance is sourced from a separate exemplar sentence.

However, these prior works have only utilized limited syntactic information available in the

parse tree of the exemplar sentence. In this chapter, we address this limitation in the paper

and propose Syntax Guided Controlled Paraphraser (SGCP), an end-to-end framework for

syntactic paraphrase generation. We find that SGCP can generate syntax-conforming sentences

while not compromising on relevance.

4.1 Introduction

Controlled text generation is the task of producing a sequence of coherent words based on given

constraints. These constraints can range from simple attributes like tense, sentiment polarity

and word-reordering [52, 119, 149] to more complex syntactic information. For example, given

a sentence ”The movie is awful!” and a simple constraint like flip sentiment to positive, a

controlled text generator is expected to produce the sentence ”The movie is fantastic!”.

These constraints are important in not only providing information about what to say but
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Source – how do i predict the stock market ?
Exemplar – can a brain transplant be done ?

SCPN – how can the stock and start ?
CGEN – can the stock market actually happen ?
SGCP (Ours) – can i predict the stock market ?

Source – what are some of the mobile apps you ca n’t live without and why ?
Exemplar – which is the best resume you have come across ?

SCPN – what are the best ways to lose weight ?
CGEN – which is the best mobile app you ca n’t ?
SGCP (Ours) – which is the best app you ca n’t live without and why ?

Table 4.1: Sample syntactic paraphrases generated by SCPN [58], CGEN [20], SGCP (Ours).
We observe that SGCP is able to generate syntax-conforming paraphrases without compro-
mising much on relevance.

also how to say it. Without any constraint, the ubiquitous sequence-to-sequence neural models

often tend to produce degenerate outputs and favour generic utterances [134, 83]. While simple

attributes are helpful in addressing what to say, they provide very little information about how

to say it. Syntactic control over generation helps in filling this gap by providing that missing

information.

Incorporating complex syntactic information has shown promising results in neural machine

translation [125, 1, 148], data-to-text generation [105], abstractive text-summarization [18] and

adversarial text generation [58]. Additionally, recent work [58, 77] has shown that augmenting

lexical and syntactical variations in the training set can help build better-performing and more

robust models.

In this chapter, we focus on the task of syntactically controlled paraphrase generation, i.e.,

given an input sentence and a syntactic exemplar, produce a sentence that conforms to the

syntax of the exemplar while retaining the meaning of the original input sentence. While the

syntactically controlled generation of paraphrases finds applications in multiple domains like

data augmentation and text passivization, we highlight its importance in the particular task

of Text simplification. As pointed out in Siddharthan [121], depending on the literacy skill

of an individual, certain syntactical forms of English sentences are more straightforward to

comprehend than others. As an example, consider the following two sentences:

S1 Because it is raining today, you should carry an umbrella.

S2 You should carry an umbrella today because it is raining.
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Connectives that permit pre-posed adverbial clauses have been found to be difficult for third to

fifth-grade readers, even when the order of mention coincides with the causal (and temporal)

order [3, 80]. Hence, they prefer sentence S2. However, various other studies [25, 63, 54] have

suggested that for older school children, college students, and adults, comprehension is better

for the cause-effect presentation, hence sentence S1. Thus, modifying a sentence syntactically

would help in better comprehension based on literacy skills.

Prior work in syntactically controlled paraphrase generation addressed this task by condi-

tioning the semantic input on either the features learned from a linearized constituency-based

parse tree [58] or the latent syntactic information [20] learned from exemplars through varia-

tional auto-encoders. Linearizing parse trees typically results in the loss of essential dependency

information. On the other hand, as noted in [120], an auto-encoder-based approach might not

offer rich enough syntactic information as guaranteed by actual constituency parse trees. More-

over, as noted in Chen et al. [20], SCPN [58] and CGEN [20] tend to generate sentences of

the same length as the exemplar. This is undesirable because it often produces sentences that

end abruptly, compromising grammaticality and semantics. Please see Table 4.1 for sample

generations using each model.

To address these gaps, we propose Syntax Guided Controlled Paraphraser (SGCP), which

uses complete exemplar syntactic tree information. Additionally, our model provides an easy

mechanism to incorporate different levels of syntactic control (granularity) based on the height

of the tree being considered. The decoder in our framework is augmented with rich enough syn-

tactical information to produce syntax-conforming sentences while not losing out on semantics

and grammaticality.

The main contributions of this work are as follows:

• We propose Syntax Guided Controlled Paraphraser (SGCP), an end-to-end model to

generate syntactically controlled paraphrases at different levels of granularity using a

parsed exemplar.

• We provide a new decoding mechanism to incorporate syntactic information from the

exemplar sentence’s syntactic parse.

• We provide a dataset formed from Quora Question Pairs 1 for evaluating the models.

We also perform extensive experiments to demonstrate the efficacy of our model using

multiple automated metrics and human evaluations.

1https://www.kaggle.com/c/quora-question-pairs
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4.2 SGCP: Proposed Method

This section describes the inputs and various architectural components essential for building

SGCP, an end-to-end trainable model. Our model, as shown in Figure 4.1, comprises a sentence

encoder (4.2.2), syntactic tree encoder (4.2.3), and a syntactic-paraphrase-decoder (4.2.4).

(1) SENTENCE ENCODER
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Figure 4.1: Architecture of SGCP (proposed method). SGCP aims to paraphrase an input
sentence while conforming to the syntax of an exemplar sentence (provided along with the
input). The input sentence is encoded using the Sentence Encoder (Section 4.2.2) to obtain
a semantic signal ct. The Syntactic Encoder (Section 4.2.3) takes a constituency parse tree
(pruned at height H) of the exemplar sentence as an input and produces representations for all
the nodes in the pruned tree. Once both of these are encoded, the Syntactic Paraphrase Decoder
(Section 4.2.4) uses pointer-generator network, and at each time step takes the semantic signal
ct, the decoder recurrent state st, embedding of the previous token and syntactic signal hZt
to generate a new token. Note that the syntactic signal remains the same for each token in
a span (shown in the figure above curly braces; please see Figure 4.2 for more details). The
gray-shaded region (not part of the model) illustrates a qualitative comparison of the exemplar
syntax tree and the syntax tree obtained from the generated paraphrase. Please refer to Section
4.2 for details.

4.2.1 Inputs

Given an input sentence X and a syntactic exemplar Z, our goal is to generate a sentence Y

that conforms to the syntax of Z while retaining the meaning of X.
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While the semantic encoder (Section 4.2.2) works on sequence of input tokens, the syntactic

encoder (Section 4.2.3) operates on constituency-based parse trees. We parse the syntactic

exemplar Z1 to obtain its constituency-based parse tree. The leaf nodes of the constituency-

based parse tree consist of tokens for sentence Z. However, we only need the syntacticality of

exemplar Z to generate a syntax-guided paraphrase of sentence X. Therefore, the information

in leaf nodes of Z is not necessary for the task at hand. To prevent any meaning propagation

from exemplar sentence Z into the generation, we remove these leaf/terminal nodes from its

constituency parse. The tree thus obtained is denoted as CZ .

The syntactic encoder, additionally, takes as input H, which governs the level of syntactic

control needed to be induced. The utility of H will be described in Section 4.2.3.

4.2.2 Semantic Encoder

The semantic encoder, a multi-layered Gated Recurrent Unit (GRU), receives tokenized sen-

tence X = {x1, . . . , xTX
} as input and computes the contextualized hidden state representation

hXt for each token using:

hXt = GRU(hXt−1, e(xt)), (4.1)

where e(xt) represents the learnable embedding of the token xt and t ∈ {1, . . . , TX} . Note that

we use byte-pair encoding [118] for word/token segmentation.

4.2.3 Syntactic Encoder

This encoder provides the necessary syntactic guidance for the generation of paraphrases. For-

mally, let constituency tree CZ = {V,E,Z}, where V is the set of nodes, E the set of edges and

Z the labels associated with each node.

We calculate the hidden-state representation hZv of each node v ∈ V using the hidden-state

representation of its parent node pa(v) and the embedding associated with its label zv as follows:

hZv = GeLU(Wpah
Z
pa(v) +Wve(zv) + bv), (4.2)

where e(zv) is the embedding of the node label zv, and Wpa,Wv, bv are learnable parameters.

This approach can be considered similar to TreeLSTM [129]. We use GeLU activation function

[48] rather than the standard tanh or relu, because of superior empirical performance.

As indicated in Section 4.2.1, syntactic encoder takes as input the height H, which governs

the level of syntactic control. We randomly prune the tree CZ to height H ∈ {3, . . . , Hmax},
where Hmax is the height of the full constituency tree CZ . The minimum value of 3 is a heuristic

1Obtained using the Stanford CoreNLP toolkit [97]

53



SBARQ

WHNP SQ

WP VBZ NP

NP

DT JJS NN

PP

IN NP

NN NN

What   is    the   best   language    for    web  development    ?

ROOT

H = 3 ; 𝑎 = (1,1,1,0,0,0,0,0,1)

H = 4 ; 𝑎 = (1,1,1,0,0,1,0,0,1)

H = 5 ; 𝑎 = (1,1,1,1,1,1,1,0,1)

H = 2 ; 𝑎 = (1,1,0,0,0,0,0,0,1)

<DOT>

(a) Full Constituency Parse Tree

SBARQ

WHNP SQ

WP VBZ NP

ROOT

H = 3 ; 𝑎 = (1,1,1,0,0,0,0,0,1)

<DOT>

(b) Pruned tree at height H = 3

Figure 4.2: The constituency parse tree serves as an input to the syntactic encoder (Section
4.2.3). The first step is to remove the leaf nodes which contain meaning representative tokens
(Here: What is the best language ...). H denotes the height to which the tree can be pruned
and is an input to the model. Figure (a) shows the full constituency parse tree annotated with
vector a for different heights. Figure (b) shows the same tree pruned at height H = 3 with
its corresponding a vector. The vector a serves as an signalling vector (Section 4.2.4) which
helps in deciding the syntactic signal to be passed on to the decoder. Please refer Section 4.2
for details.

that the pruned sub-tree is at a sufficiently deep level. The purpose of pruning is twofold.

Firstly, pruning results in generation of alternate sub-trees. These sub-trees can increase the

training data by adding more samples relevant to the sub-trees. Secondly, pruning prevents

inference-time distribution shift. The reason to do this is as follows. Not all English sentences

can be converted into the desirable syntax of the exemplar sentence. For example, consider

the exemplar is ‘What is the best language for web development? ’ and the source sentence is

‘How do I go from Bengaluru to Hyderabad? ’. The syntax and word length of the source and

exemplar are different. Also, the two sentences are questions of different types (‘what’ and

‘how’ respectively). In this case, the expected output could be ‘What is a good way to go from

Bengaluru to Hyderabad? ’ This situation represents the scenario where the full-syntax tree of

the exemplar is incompatible in terms of syntactic generation with the source sentence. In such

cases, it may be necessary to prune the exemplar tree to a level where it becomes compatible.

However, note that all trees are trivially compatible at the root since all constituency parse

trees have the root node ROOT. Since pruning during training has made it easier for the model

to understand the distribution, it should handle such cases effectively. Consider the sentence

‘What is the best language for web development? ’. We prune the constituency-based parse tree
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of the exemplar sentence to height H = 3, where the leaf nodes have the labels WP, VBZ, NP,

and <DOT>, as shown in Figure 4.2b. While we calculate the hidden-state representation of

all nodes, only the pruned tree terminal nodes provide the decoder’s syntactic signal (Section

4.2.4).

We maintain a queue LZ
H of such terminal node representations where elements are inserted

from left to right for a given H. Specifically, for the particular example given in Figure 4.2b,

LZ
H = [hZWP, h

Z
VBZ, h

Z
NP, h

Z
<DOT>]

We emphasize that the length of the queue |LZ
H | is a function of height H.

4.2.4 Syntactic Paraphrase Decoder

Having obtained the semantic and syntactic representations, the decoder is tasked with the

generation of syntactic paraphrases. This can be modeled as finding the best Y = Y ∗ that

maximizes the probability P(Y |X,Z), which can further be factorized as:

Y ∗ = argmax
y

TY∏
t=1

(yt|y1, . . . , yt−1, X, Z), (4.3)

where TY is the maximum length up to which decoding is required.

In the subsequent sections, we use t to denote the decoder time step.

(a) Using Semantic Information

At each decoder time step t, the attention distribution αt is calculated over the encoder hidden

states hXi , obtained using Equation 4.1, as:

eti = v⊺tanh(Whh
X
i +Wsst + battn)

αt = softmax(et),
(4.4)

where st is the decoder cell-state and v,Wh,Ws, battn are learnable parameters.

The attention distribution provides a way to jointly align and train sequence-to-sequence

models by producing a weighted sum of the semantic encoder hidden states, known as context-

vector ct given by:

ct =
∑
i

αt
ih

X
i (4.5)

ct is the semantic signal essential for generating meaning-preserving sentences.

(b) Using Syntactic Information
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During training, we use Z = Y and each terminal node in the tree CZ , pruned at H, is equipped

with information about the span of words it needs to generate. This is because during training,

by having Z = Y , we specifically know the constituency tags associated with the spans in

the final syntactic paraphrase to be generated. At each time step t, only one terminal node

representation hZv ∈ LZ
H is responsible for providing the syntactic signal, which we call hZt .

This hidden-state representation to be used is governed through an signalling vector a =

(a1, . . . , aTy), where each ai ∈ {0, 1}. 0 indicates that the decoder should keep on using the

same hidden-representation hZv ∈ LZ
H that is currently being used, and 1 indicates that the next

element (hidden-representation) in the queue LZ
H should be used for decoding.

(c) Example

The utility of a can be best understood through Figure 4.2. Consider the syntactic tree CZ for

the sentence “What is the best language for web development ?”, pruned at height H = 3. For

this example, the terminal nodes WP, VBZ, NP, and <DOT> in the pruned tree are considered to

provide the syntactic signal. We process the tree tokens using the syntactic encoder and obtain

a queue of terminal node representations:

LZ
H = [hZWP, h

Z
VBZ, h

Z
NP, h

Z
<DOT>]

and a corresponding signalling vector

a = (1, 1, 1, 0, 0, 0, 0, 0, 1)

The length of this vector is equal to the number of tokens in the sentence. The value at each

position corresponds to the operation to be performed on the queue. We show the working of

the process as follows.

ai = 1 provides a signal to pop an element from the queue LZ
H while ai = 0 provides a

signal to keep using the last popped element. This element is then used to guide the decoder

syntactically by giving a signal in the form of hidden-state representation (Equation 4.8).

Specifically, in this example, the a1 = 1 signals LZ
H to pop hZWP to provide syntactic guidance

to the decoder for generating the first token, y1 =“What”. a2 = 1 signals LZ
H to pop hZVBZ to

provide syntactic guidance to the decoder for generating the second token, y2 =“is” . a3 = 1

helps in obtaining hZNP from LZ
H to provide guidance to generate the third token. As described

earlier, a4, . . . , a8 = 0 indicate that the same representation hZNP should be used for syntacti-

cally guiding tokens y3, . . . , y8. Therefore, hZNP helps in generating “the best language for web

development” Finally a9 = 1 helps in retrieving hZ<DOT> for guiding decoder to generate token y9,
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“?”. Note that |LZ
H | =

∑Ty

i=1 ai

While a is provided to the model during training, this information might not be available

during inference. Providing a during generation makes the model restrictive and might produce

ungrammatical sentences. SGCP is tasked to learn a proxy for the signalling vector a, using

transition probability vector p.

At each time step t, we calculate pt ∈ (0, 1), which determines the probability of changing

the syntactic signal using:

pt = σ(Wbop([ct;h
Z
t ; st; e(y

′
t)]) + bbop), (4.6)

hZt+1 =

hZt pt < 0.5

pop(LZ
H) otherwise

(4.7)

where pop removes and returns the next element in the queue, st is the decoder state, and e(y′t)

is the embedding of the input token at time t during decoding.

(d) Overall

The semantic signal ct, together with decoder state st, the embedding of the input token e(y′t)

and the syntactic signal hZt is fed through a GRU followed by softmax of the output to produce

a vocabulary distribution as:

Pvocab = softmax(W ([ct;h
Z
t ; st; e(y

′
t)]) + b), (4.8)

where [; ] represents concatenation of constituent elements, and W, b are trainable parameters.

We augment this with the copying mechanism [135] as in the pointer-generator network [116].

Usage of such a mechanism offers a probability distribution over the extended vocabulary (the

union of vocabulary words and words present in the source sentence) as follows:

P(y) = pgenPvocab(y) + (1− pgen)
∑
i:zi=z

αt
i

pgen = σ(w⊺
c ct + w⊺

sst + w⊺
xe(y

′
t) + bgen)

(4.9)

where wc, ws, wx and bgen are learnable parameters, e(y′t) is the input token embedding to the

decoder at time step t, and αt
i is the element corresponding to the ith co-ordinate in the attention

distribution as defined in Equation 4.4

The overall objective can be obtained by taking the negative log-likelihood of the distribu-
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tions obtained in Equation 4.6 and Equation 4.9.

L =− 1

T

T∑
t=0

[logP(y∗t )

+ at log(pt)

+ (1− at) log(1− pt)]

(4.10)

where at is the tth element of the vector a.

4.3 Experiments

Our experiments are geared toward answering the following questions:

Q1. Is SGCP able to generate syntax-conforming sentences without losing out on meaning?

(Section 4.4.1, 4.4.4)

Q2. What level of syntactic control does SGCP offer? (Section 4.4.2, 4.4.3, 4.4.2)

Q3. How does SGCP compare against prior models, qualitatively? (Section 4.4.4)

Q4. Are the improvements achieved by SGCP statistically significant? (Section 4.4.1)

Based on these questions, we outline the methods compared (Section 4.3.1), along with the

datasets (Section 4.3.2) used, evaluation criteria (Section 4.3.3) and the experimental setup

(Section 4.3.4).

4.3.1 Methods Compared

As in Chen et al. [20], we first highlight the results of the two direct return-input baselines.

1. Source-as-Output: Baseline where the output is the semantic input.

2. Exemplar-as-Output: Baseline where the output is the syntactic exemplar.

We compare the following competitive methods:

3. SCPN [58] is a sequence-to-sequence based model comprising two encoders built with

LSTM [49] to encode semantics and syntax respectively. Once the encoding is obtained, it

serves as an input to the LSTM-based decoder which is augmented with soft-attention [6]

over encoded states as well as a copying mechanism [116] to deal with out-of-vocabulary

tokens. 1

1Note that the results for SCPN differ from the ones shown in [58]. This is because the dataset used in [58]
is at least 50 times larger than the largest dataset (ParaNMT-small) in this work.
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4. CGEN [20] is a VAE [66] model with two encoders to project semantic input and syntactic

input to a latent space. They obtain a syntactic embedding from one encoder, using a

standard Gaussian prior. To obtain the semantic representation, they use von Mises-

Fisher prior, which can be thought of as a Gaussian distribution on a hypersphere. They

train the model using a multi-task paradigm, incorporating paraphrase generation loss

and word position loss. We considered their best model, VGVAE + LC + WN + WPL,

which incorporates the above objectives.

5. SGCP (Section 4.2) is a sequence-and-tree-to-sequence-based model which encodes

semantics and tree-level syntax to produce paraphrases. It uses a GRU [24] based decoder

with soft attention on semantic encodings and a begin of phrase (bop) gate to select a

leaf node in the exemplar syntax tree. We compare the following two variants of SGCP:

(a) SGCP-F : Uses full constituency parse tree information of the exemplar for gener-

ating paraphrases.

(a) SGCP-R : SGCP can produce multiple paraphrases by pruning the exemplar tree

at various heights. This variant first generates 5 candidate generations, corresponding to 5

different heights of the exemplar tree namely {Hmax, Hmax−1, Hmax−2, Hmax−3, Hmax−4},
for each (source, exemplar) pair. The one with the highest ROUGE-1 score with the

source sentence is selected as the final generation from these candidates.

Note that, except for the return-input baselines, all methods use beam search during infer-

ence.

4.3.2 Datasets

We train the models and evaluate them on the following datasets:

(1) ParaNMT-small [20] is an existing dataset that contains 500K sentence-paraphrase pairs

for training, and 1300 manually labeled sentence-exemplar-reference which is further split into

800 test data points and 500 dev. data points respectively.

As in Chen et al. [20], our model uses only (sentence, paraphrase) during training. The para-

phrase itself serves as the exemplar input during training.

This dataset is a subset of the original ParaNMT-50M dataset [143]. ParaNMT-50M is a

data set generated automatically through back translation of original English sentences. It is

inherently noisy due to imperfect neural machine translation quality, with many sentences being

non-grammatical and some even non-English sentences. Because of such noisy data points, it

is optimistic to assume that the corresponding constituency parse tree would be well aligned.
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To that end, we propose to use the following additional dataset, which is more well-formed

and has more human intervention than the ParaNMT-50M dataset.

(2) QQP-Pos: (Newly curated dataset) The original Quora Question Pairs (QQP) dataset

contains about 400K sentence pairs labeled positive if they are duplicates of each other and

negative otherwise. The dataset is composed of about 150K positive and 250K negative pairs.

We select those positive pairs which contain both sentences with a maximum token length of

30, leaving us with ˜146K pairs. We call this dataset as QQP-Pos.

Similar to ParaNMT-small, we use only the sentence-paraphrase pairs as a training set

and sentence-exemplar-reference triples for testing and validation. We randomly choose 140K

sentence-paraphrase pairs as the training set Ttrain, and the remaining 6K pairs Teval are used

to form the evaluation set E. Additionally, let Teset =
⋃
{{X, Y } : (X, Y ) ∈ Teval}. Note that

Teset is a set of sentences while Teval is a set of sentence-paraphrase pairs.

Let E = ϕ be the initial evaluation set. For selecting exemplar for each each sentence-paraphrase

pair (X, Y ) ∈ Teval, we adopt the following procedure:

Step 1: For a given (X, Y ) ∈ Teval, construct an exemplar candidate set C = Teset − {X, Y }.
|C| ≈ 12, 000.

Step 2: Retain only those sentences C ∈ C whose sentence length (= number of tokens) differ

by at most 2 when compared to the paraphrase Y . This is done since sentences with

similar constituency-based parse tree structures tend to have similar token lengths.

Step 3: Remove those candidates C ∈ C, which are very similar to the source sentence X, i.e.

BLEU(X,C) > 0.6.

Step 4: From the remaining instances in C, choose that sentence C as the exemplar Z which

has the least Tree-Edit distance with the paraphrase Y of the selected pair i.e. Z =

argmin
C∈C

TED(Y,C). This ensures that the constituency-based parse tree of the exemplar

Z is quite similar to that of Y , in terms of Tree-Edit distance.

Step 5: E := E ∪ (X,Z, Y )

Step 6: Repeat procedure for all other pairs in Teval.

From the obtained evaluation set E, we randomly choose 3K triplets for the test set Ttest,

and the remaining 3K for the validation set V.
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QQP-Pos

Model BLEU↑ MET.↑ R-1↑ R-2↑ R-L↑ TED-R↓ TED-E↓ PDS↑

Source-as-Output 17.2 31.1 51.9 26.2 52.9 16.2 16.6 99.8
Exemplar-as-Output 16.8 17.6 38.2 20.5 43.2 4.8 0.0 10.7

SCPN [58] 15.6 19.6 40.6 20.5 44.6 9.1 8.0 27.0
CGEN [20] 34.9 37.4 62.6 42.7 65.4 6.7 6.0 65.4

SGCP-F 36.7 39.8 66.9 45.0 69.6 4.8 1.8 75.0

SGCP-R 38.0 41.3 68.1 45.7 70.2 6.8 5.9 87.7

ParaNMT-small

Source-as-Output 18.5 28.8 50.6 23.1 47.7 12.0 13.0 99.0
Exemplar-as-Output 3.3 12.1 24.4 7.5 29.1 5.9 0.0 14.0

SCPN [58] 6.4 14.6 30.3 11.2 34.6 6.2 1.4 15.4
CGEN [20] 13.6 24.8 44.8 21.0 48.3 6.7 3.3 70.2

SGCP-F 15.3 25.9 46.6 21.8 49.7 6.1 1.4 76.6

SGCP-R 16.4 27.2 49.6 22.9 50.5 8.7 7.0 83.5

Table 4.2: Results on QQP and ParaNMT-small dataset. Higher↑ BLEU, METEOR (MET.),
ROUGE (R-) and PDS is better whereas lower↓ TED score is better. SGCP-R selects the best
candidate out of many, resulting in a performance boost for semantic preservation (shown in
box). We bold the statistically significant results of SGCP-F, only, for a fair comparison with
the baselines. Note that Source-as-Output and Exemplar-as-Output are only dataset quality
indicators and not competitive baselines. Please see Section 4.4 for details.

4.3.3 Evaluation

It should be noted that there is no single fully-reliable metric for evaluating syntactic paraphrase

generation. Therefore, we evaluate on the following metrics to showcase the efficacy of syntactic

paraphrasing models.

1. Automated Evaluation.

(i) Alignment based metrics: We compute BLEU [103], METEOR [8], ROUGE-1,

ROUGE-2, ROUGE-L [89] scores between the generated and the reference paraphrases

in the test set.

(ii) Syntactic Transfer: We evaluate the syntactic transfer using Tree-edit distance

[150] between the parse trees of:

(a) the generated and the syntactic exemplar in the test set - TED-E

(b) the generated and the reference paraphrase in the test set - TED-R

(iii) Model-based evaluation: Since our goal is to generate paraphrases of the input

sentences, we need some measure to determine if the generations indeed convey the same

meaning as the original text. To achieve this, we adopt a model-based evaluation metric
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as used by Shen et al. [119] for Text Style Transfer and Isola et al. [55] for Image Transfer.

Specifically, classifiers are trained on the task of Paraphrase Detection and then used as

Oracles to evaluate the generations of our model and the baselines. We fine-tune two

RoBERTa [91] based sentence pair classifiers, one on Quora Question Pairs (Classifier-1 )

and the other on ParaNMT + PAWS1 datasets (Classifier-2 ) which achieve accuracies of

90.2% and 94.0% on their respective test sets2.

Once trained, we use Classifier-1 to evaluate generations on QQP-Pos and Classifier-2

on ParaNMT-small.

We first generate syntactic paraphrases using all the models (Section 4.3.1) on the test

splits of QQP-Pos and ParaNMT-small datasets. We then pair the source sentence with

their corresponding generated paraphrases and send them as input to the classifiers. The

Paraphrase Detection score, denoted as PDS in Table 4.2, is defined as, the ratio of the

number of generations predicted as paraphrases of their corresponding source sentences

by the classifier to the total number of generations.

2. Human Evaluation.

While TED is sufficient to highlight syntactic transfer, there has been some skepticism

regarding automated metrics for paraphrase quality [112]. To address this issue, we

perform a human evaluation on 100 randomly selected data points from the test set. In

the evaluation, 3 judges (non-researchers proficient in the English language) were asked to

assign scores to generated sentences based on the semantic similarity with the given source

sentence. The annotators were shown a source sentence and the corresponding outputs

of the systems in random order. The scores ranged from 1 (doesn’t capture meaning at

all) to 4 (perfectly captures the meaning of the source sentence).

4.3.4 Setup

(a) Pre-processing. Since our model needs access to constituency parse trees, we tokenize and

parse all our data points using the fully parallelizable Stanford CoreNLP Parser [97] to obtain

their respective parse trees. This is done prior to training in order to prevent any additional

computational costs that might be incurred because of repeated parsing of the same data points

during different epochs.

1Since the ParaNMT dataset only contains paraphrase pairs, we augment it with PAWS [152] dataset to
acquire negative samples.

2Since the test set of QQP is not public, the 90.2% number was computed on the available dev set (not used
for model selection)
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Source what should be done to get rid of laziness ?
Template Exemplar how can i manage my anger ?

SCPN [58] how can i get rid ?
CGEN [20] how can i get rid of ?
SGCP-F (Ours) how can i stop my laziness ?
SGCP-R (Ours) how do i get rid of laziness ?

Source what books should entrepreneurs read on entrepreneurship ?
Template Exemplar what is the best programming language for beginners to learn ?

SCPN [58] what are the best books books to read to read ?
CGEN [20] what ’s the best book for entrepreneurs read to entrepreneurs ?
SGCP-F (Ours) what is a best book idea that entrepreneurs to read ?
SGCP-R (Ours) what is a good book that entrepreneurs should read ?

Source
how do i get on the board of directors of a non profit or a for profit organisation
?

Template Exemplar what is the best way to travel around the world for free ?

SCPN [58] what is the best way to prepare for a girl of a ?
CGEN [20] what is the best way to get a non profit on directors ?
SGCP-F (Ours) what is the best way to get on the board of directors ?

SGCP-R (Ours)
what is the best way to get on the board of directors of a non profit or a for
profit organisation ?

Table 4.3: Sample generations of the competitive models. Please refer to Section 4.4.5 for
details

(b) Implementation details. We train both our models using the Adam Optimizer [64] with

an initial learning rate of 7e-5. We use a bidirectional 3-layered GRU for encoding the tokenized

semantic input and a standard pointer-generator network with GRU for decoding. The token

embedding is learnable with dimension 300. To reduce the training complexity of the model,

the maximum sequence length is kept at 60. The vocabulary size is kept at 24K for QQP and

50K for ParaNMT-small.

SGCP needs access to the level of syntactic granularity for decoding, depicted as H in

Figure 4.2. During training, we keep on varying it randomly from 3 to Hmax, changing it with

each training epoch. This ensures that our model is able to generalize because of an implicit

regularization attained using this procedure. At each time step of the decoding process, we

keep a teacher-forcing ratio of 0.9.
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4.4 SGCP Results

4.4.1 Semantic Preservation and Syntactic transfer

1. Automated Metrics: As can be observed in Table 4.2, our method(s) (SGCP-F/R

(Section 4.3.1)) are able to outperform the existing baselines on both the datasets. Source-as-

Output is independent of the exemplar sentence being used and since a sentence is a paraphrase

of itself, the paraphrastic scores are generally high while the syntactic scores are below par.

The opposite is true for Exemplar-as-Output. These baselines also serve as dataset quality

indicators. It can be seen that the source is semantically similar while being syntactically

different from the target sentence whereas the opposite is true when the exemplar is compared

to target sentences. Additionally, source sentences are syntactically and semantically different

from exemplar sentences as can be observed from TED-E and PDS scores. This helps in showing

that the dataset has rich enough syntactic diversity to learn from.

Through TED-E scores it can be seen that SGCP-F is able to adhere to the syntax of the

exemplar template to a much larger degree than the baseline models. This verifies that our

model is able to generate meaning-preserving sentences while conforming to the syntax of the

exemplars when measured using standard metrics.

It can also be seen that SGCP-R tends to perform better than SGCP-F in terms of para-

phrastic scores while taking a hit on the syntactic scores. This makes sense, intuitively, because

in some cases SGCP-R tends to select lower H values for syntactic granularity. This can also

be observed from the example given in Table 4.6 where H = 6 is more favourable than H = 7,

because of better meaning retention.

Although CGEN performs close to our model in terms of BLEU, ROUGE and METEOR

scores on the ParaNMT-small dataset, its PDS is still much lower than that of our model,

suggesting that our model is better at capturing the original meaning of the source sentence.

In order to show that the results are not coincidental, we test the statistical significance of

our model. We follow the non-parametric Pitman’s permutation test [33] and observe that our

model is statistically significant when the significance level (α) is taken to be 0.05. Note that

this holds true for all metrics on both the datasets except ROUGE-2 on ParaNMT-small.

2. Human Evaluation: Table 4.4 shows the results of human assessment. It can be seen

that annotators, generally tend to rate SGCP-F and SGCP-R (Section 4.3.1) higher than the

baseline models, thereby highlighting the efficacy of our models. This evaluation additionally

shows that automated metrics are somewhat consistent with human evaluation scores.
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SCPN CGEN SGCP-F SGCP-R

QQP-Pos 1.63 2.47 2.70 2.99

ParaNMT-small 1.24 1.89 2.07 2.26

Table 4.4: A comparison of human evaluation scores for comparing the quality of paraphrases
generated using all models. A higher score is better. Please refer to Section 4.4.1 for details.

SOURCE : how do i develop my career in software ?

SYNTACTIC EXEMPLAR SGCP GENERATIONS

how can i get a domain for free ? how can i develop a career in software ?

what is the best way to register a company ?
what is the best way to develop career in software
?

what are good places to visit in new york ?
what are good ways to develop my career in software
?

can i make 800,000 a month betting on horses ? can i develop my career in software ?

what is chromosomal mutation ? what are some
examples ?

what is good career ? what are some of the ways to
develop my career in software ?

is delivery free on quikr ? is career useful in software ?

is it possible to mute a question on quora ? is it possible to develop my career in software ?

Table 4.5: Sample SGCP-R generations with a single source sentence and multiple syntactic
exemplars. Please refer to Section 4.4.4 for details.

4.4.2 Syntactic Control

1. Syntactical Granularity : Our model can work with different levels of granularity for the

exemplar syntax, i.e., different tree heights of the exemplar tree can be used for decoding the

output.

As can been seen in Table 4.6, at height 4 the syntax tree provided to the model is not

enough to generate the full sentence that captures the meaning of the original sentence. As we

increase the height to 5, it is able to capture the semantics better by predicting some of in the

sentence. We see that at heights 6 and 7 SGCP is able to capture both semantics and syntax

of the source and exemplar respectively. However, as we provide the complete height of the tree

i.e., 7, it further tries to follow the syntactic input more closely leading to sacrifice in the overall

relevance since the original sentence is about pure substances and not a pure substance. It can

be inferred from this example that since a source sentence and exemplar’s syntax might not be

fully compatible with each other, using the complete syntax tree can potentially lead to a loss
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S what are pure substances ? what are some examples ?
E what are the characteristics of the elizabethan theater ?

H = 4 what are pure substances ?
H = 5 what are some of pure substances ?
H = 6 what are some examples of pure substances ?
H = 7 what are some examples of a pure substance ?

Table 4.6: Sample generations with different levels of syntactic control. S and E stand for
source and exemplar, respectively. Please refer to Section 4.4.2 for details.

of relevance and grammaticality. Hence by choosing different levels of syntactic granularity,

one can address the issue of compatibility to a certain extent.

2. Syntactic Variety : Table 4.5 shows sample generations of our model on multiple exem-

plars for a given source sentence. It can be observed that SGCP can generate high-quality

outputs for a variety of different template exemplars even the ones which differ a lot from the

original sentence in terms of their syntax. A particularly interesting exemplar is what is chro-

mosomal mutation ? what are some examples ?. Here, SGCP is able to generate a sentence

with two question marks while preserving the essence of the source sentence. It should also be

noted that the exemplars used in Table 4.5, were selected manually from the test sets, consider-

ing only their qualitative compatibility with the source sentence. Unlike the procedure used for

the creation of QQP-Pos dataset, the final paraphrases were not kept in hand while selecting

the exemplars. In real-world settings, where a gold paraphrase won’t be present, these results

are indicative of the qualitative efficacy of our method.

4.4.3 SGCP-R Analysis

ROUGE-based selection from the candidates favour paraphrases that have higher n-gram over-

lap with their respective source sentences and hence may capture the source’s meaning better.

This hypothesis can be directly observed from the results in Table 4.2 and Table 4.4 where we

see higher values on automated semantic and human evaluation scores. While this helps in get-

ting better semantic generations, it tends to result in higher TED values. One possible reason is

that, when provided with the complete tree, fine-grained information is available to the model

for decoding and it forces the generations to adhere to the syntactic structure. In contrast, at

lower heights, the model is provided with lesser syntactic information but equivalent semantic

information.
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4.4.4 Qualitative Analysis

Single-Pass Syntactic
Signal

Granularity

SCPN ✗ Linearized Tree ✓

CGEN ✓ POS Tags
(During
training)

✗

SGCP ✓ Constituency
Parse Tree

✓

Table 4.7: Comparison of different syntactically controlled paraphrasing methods. Please refer
to Section 4.4.4 for details.

As can be seen from Table 4.7, SGCP not only incorporates the best aspects of both the

prior models, namely SCPN and CGEN, but also utilizes the complete syntactic information

obtained using the constituency-based parse trees of the exemplar.

From the generations in Table 4.3, it can be observed that our model is able to capture

both, the semantics of the source text as well as the syntax of the template. SCPN, evidently,

can produce outputs with the template syntax, but it does so at the cost of the semantics

of the source sentence. This can also be verified from the results in Table 4.2 where SCPN

performs poorly on PDS as compared to other models. In contrast, CGEN and SGCP retain

much better semantic information, as is desirable. While generating sentences, CGEN often

abruptly ends the sentence as in example 1 in Table 4.3, truncating the penultimate token with

of. The problem of abrupt ending due to insufficient syntactic input length was highlighted

in Chen et al. [20] and we observe similar trends. SGCP on the other hand generates more

relevant and grammatical sentences.

Based on empirical evidence, SGCP alleviates this shortcoming, possibly due to dynamic

syntactic control and decoding. This can be seen in e.g., 3 in Table 4.3 where CGEN truncates

the sentence abruptly (penultimate token = directors) but SGCP is able to generate relevant

sentence without compromising on grammaticality.

4.4.5 Limitations and Future directions

All natural language English sentences cannot necessarily be converted to desirable syntax.

We note that SGCP does not take into account the compatibility of the source sentence and

template exemplars and can freely generate syntax-conforming paraphrases. This at times,
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leads to imperfect paraphrase conversion and nonsensical sentences like example 6 in Table 4.5

(is career useful in software ? ). Identifying compatible exemplars is an important but separate

task in itself, which we defer to future work.

Another important aspect is that the task of paraphrase generation is inherently domain-

agnostic. It is easy for humans to adapt to new domains for paraphrasing. However, due to

the nature of the formulation of the problem in NLP, all the baselines as well as our model(s),

suffer from dataset bias and are not directly applicable to new domains. A prospective future

direction can be to explore it from the lens of domain independence.

Analyzing the utility of controlled paraphrase generations for the task of data augmentation

is another interesting possible direction.

4.5 Summary

In this chapter, we proposed SGCP, an end-to-end framework for syntactically controlled

paraphrase generation. SGCP generates a paraphrase of an input sentence while conforming

to the syntax of an exemplar sentence provided along with the input. SGCP comprises a

GRU-based sentence encoder, a modified RNN-based tree encoder, and a pointer-generator-

based novel decoder. In contrast to previous works that focus on a limited amount of syntactic

control, our model can generate paraphrases at different levels of granularity of syntactic control

without compromising on relevance. Through extensive evaluations of real-world datasets, we

demonstrate SGCP’s efficacy over state-of-the-art baselines.

We believe that the above approach can be helpful in various text generation tasks, includ-

ing syntactic exemplar-based abstractive summarization, text simplification, and data-to-text

generation.
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Part II

Inducing Consistency in Paraphrase

Detection
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Chapter 5

Consistency in Paraphrase Detection

In the previous chapters of the thesis, we discussed how constraints can be induced in para-

phrase generation in order to ensure diversity and syntacticality. In this chapter, we focus on

paraphrase detection. As described in the introduction chapter (Chapter 1), we look at the

problem of inconsistencies in fine-tuned pre-trained models for paraphrase detection, and aim

to address that using a simple objective function.

While fine-tuning pre-trained models for downstream classification is the conventional paradigm

in NLP, task-specific nuances may not get captured in the resultant models. Specifically, for

tasks that take two inputs and require the output to be invariant of the order of the inputs,

inconsistency is often observed in the predicted label or confidence score. In this chapter, we

propose a consistency loss function to alleviate inconsistency in symmetric classification.

5.1 Introduction

Symmetric classification tasks are tasks involving two inputs where the model output should

be independent of the order in which the two input texts are given. In other words, the output

of the classifier should be the same and the confidence score must not be significantly different,

if the inputs X and Y are instead supplied as Y and X. Examples of symmetric classification

are paraphrase detection, multi-lingual semantic similarity and so on. Although attention-

based [7, 132] pre-trained language models have led to significant performance gains in multiple

text classification tasks; they demonstrate erratic behavior on symmetric classification. An

example1 of inconsistency for paraphrase detection is shown in Figure 5.1. While it is natural

to use simple rules for paraphrase detection, the need to use a model-based metric for the task

becomes evident when dealing with complex pairs. Consider the sarcastic paraphrase pair:

1Note that while this particular example is based on our fine-tuned model, it will change depending on the
trained model. The overall argument is valid, nonetheless.
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A provisional government or a revolutionary 

government has been declared several times 


by insurgent groups in the Philippines .

A revolutionary government or a provisional 

government has been declared several times


in the Philippines by insurgent groups .

X

Y

X Y

XY

Model

Input  
Sequence

(98.6) (88.3)

(92.2) (87.9)

Figure 5.1: Impact of reordering an example input pair (X and Y ) on standard fine-tuned
BERT and BERT-with-consistency-loss . The pair are true paraphrases. and denote
that the model predicted them to be paraphrases and not-paraphrases, respectively. Confidence
scores are reported in brackets. Details in Section 5.1.

“Wow! You are really short!” and “Wow! You aren’t even able to reach the lowest bookshelf !”.

These sentences are, in a sense, functionally similar to each other since they convey similar

intents but are not exactly paraphrases in the strict sense of the word because of implicit

negative sentiment in the first sentence. Additional examples can be found in Table 5.3. To

alleviate such inconsistency for symmetric classification tasks, we propose a simple additional

drop-in fine-tuning objective, based on either the Kullback-Leibler (KL) or Jensen-Shannon

(JS) divergence (or any f -divergence [114]), to the cross-entropy loss for symmetric tasks. We

refer to this as the consistency loss.

The main contributions of this chapter are:

(a) Highlight inconsistency issues in symmetric tasks,

(b) Describe a consistency loss function to alleviate inconsistency, and

(c) Demonstrate the applicability and limitations of the loss function via qualitative and quan-

titative analyses on tasks from the GLUE benchmark.

Additionally, we have made the data and code public1 to drive future research.

Note: The inconsistency problem can be attributed partly to the positional embedding. How-

1https://github.com/ashutoshml/alleviating-inconsistency
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Category Datasets Train Val. Test

Pairwise Symmetric
QQP 327462 40430 36384
PAWS 49401 8000 8000
MRPC 3302 408 366

Single Sentence SST2 60615 6872 6734

Pairwise Non-symmetric
QNLI 99506 5463 5237
RTE 2241 277 249

Table 5.1: Datasets Statistics. Please refer to Section 5.3.

ever, it has been shown that eliminating positional embedding results in poor performance of

the model [141, 139].

5.2 Method

5.2.1 Problem Description

A. Given a pair of input sentences (X, Y ), label l(X,Y ), and a pre-trained BERT-based model

MPre, output a reliable model MRel for predicting an output label for a new input pair

(Xtest, Ytest) such that the inconsistency between its different ordering is minimized. While

we only experiment with semantic similarity (or paraphrasing), the description holds for other

symmetric relations, too (like if two sentences have the same polarity or not).

B. Given a model fine-tuned on the task above MRel, can it help in providing a better ini-

tialization for transfer learning an empirically superior model M′ on other downstream tasks?

5.2.2 Setup

For problem A (Section 5.2.1), the input is a concatenation of tokenized strings X = x1, . . . , xm

and Y = y1, . . . , yn separated using a special token ([SEP] in the case of BERT). The concate-

nated inputs with the special token are passed through multiple self-attention layers [132]. In

the traditional approach, the representation of the first token (<s> or [CLS]) is passed through

a fully connected classifier layer (the exact final representation is used irrespective of the arity

of the task inputs). Our approach uses the [CLSPara] representation for symmetric classifica-

tion tasks. In contrast, we use the standard first token (<s> or [CLS]) representation for single

input and non-symmetric classification tasks (Section 5.3). Since we first fine-tune the model

on [CLSPara] representation, our approach allows for pair-wise knowledge to be transferred to

other downstream classification tasks (problem B (Section 5.2.1)).
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Figure 5.2: BERT-with-consistency-loss. We use an additional classification token: [CLSPara]
for our input, upon which the consistency objective is applied. Please refer to Section 5.2.2 for
details.

Let us contrast this method that we call BERT-with-consistency-loss as shown in Figure 5.2.

In the traditional BERT-based approach, the input is pre-pended with a special symbol ([CLS]

in case of BERT and <s> in case of RoBERTa). In our approach, we concatenate the special

symbol with an extra symbol. We call the extra symbol [CLSPara]. This extra token is

used explicitly for symmetric classification tasks to ensure prediction consistency. We also

experimented with sharing the [CLS] representation and a different classification layer for each

task but observed a substantial degradation in the performance of the other classification task.

We speculate that this was because of the negative knowledge transfer owing to excessive

parameter sharing.

The common objective used for fine-tuning BERT-based models is the cross-entropy loss, which

maximizes the probability of predicting the correct output class for a given input, given as:

Lce(l, l̂) = −
∑
i

li log l̂i, (5.1)

where l is the one-hot representation of the target class, l̂ is the softmax output of the model, and

i is the associated co-ordinate. As described earlier, this objective may produce an inconsistent
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prediction based on the order of the two inputs. To overcome this weakness, we propose an

additional consistency loss formulated in terms of either the KL or the JS Divergence. We pass

the inputs X and Y through the same model twice, once as a pair (X, Y ) (called L2R) and

then as the pair (Y,X) (called R2L). Having obtained the outputs from the model for L2R

and R2L, the final objective function for is as follows:

L = Lce(l, l̂L2R) + Lce(l, l̂R2L)

+ λ ∗D(pL2R||pR2L),
(5.2)

where λ is the weight assigned to the consistency loss. Empirically, adding this multiplicative

term λ with annealing helped stabilize the objective and achieve faster convergence. It also

ensured that the model had developed the capability to classify the sentence pair correctly (the

primary goal) before making it adhere to appropriate symmetric confidence scores. pL2R and

pR2L are the associated confidence/softmax vectors assigned by the model for L2R and R2L

sentence pairs, and D is one of the following:

1. KL(p||q) =
∑

x∈X p(x) log(p(x)
q(x)

)

2. JS(p||q) = 1
2
KL(p||m) + 1

2
KL(q||m),

Here p, q are probability distributions and m = 1
2
(p+ q). Minimizing divergences between two

distributions brings them closer to each other.

5.3 Experimental Setup

5.3.1 Datasets

We experiment with five existing datasets from the GLUE benchmark [138] as well as the PAWS

dataset [152]1. We categorize them under the following headings:

A. For Symmetric Tasks:

1. QQP: Quora Question Pairs [57] data set contains pairs of questions marked with either

1 (paraphrases) or 0 (not paraphrases).

2. PAWS: Paraphrase Adv. from Word Scrambling [152], contains human-labeled sentence

pairs annotated in line with QQP. The uniqueness of this dataset is the creation procedure

which involves back-translation and word swapping.

1Since the test split of these datasets is not available in the GLUE benchmark[138], we use splits as given in
Table 5.1. The validation dataset is kept as original, and the new train and test sets are created by randomly
splitting initial train data into train and test sets.
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(A) L2R and R2L Prediction Consistency
Mean ± stddev (Section 5.3.2: Evaluation [1])

Models QQP PAWS MRPC

Bert-base 96.6 ± 0.15 96.0 ± 0.54 91.1 ± 1.41
BERT-base w/ KL 99.3 ± 0.02 98.1 ± 0.12 97.7 ± 0.82
BERT-base w/ JS 98.9 ± 0.05 98.1 ± 0.22 96.9 ± 0.93

RoBERTa-base 97.0 ± 0.14 96.7 ± 0.25 91.5 ± 0.22
RoBERTa-base w/ KL 99.3 ± 0.03 98.9 ± 0.11 97.4 ± 0.78
RoBERTa-base w/ JS 99.1 ± 0.05 98.7 ± 0.23 96.7 ± 1.11

(B) L2R and R2L Confidence Consistency
Pearson Correlation [MSE * 1000] (Section 5.3.2: Evaluation [2])

Models QQP PAWS MRPC

Bert-base 98.2 [5.89] 96.5 [14.2] 92.7 [17.0]
BERT-base w/ KL 99.9 [0.12] 99.6 [0.5] 99.5 [0.3]

BERT-base w/ JS 99.8 [0.48] 99.3 [1.9] 99.0 [1.1]

RoBERTa-base 98.3 [5.90] 97.4 [10.8] 94.1 [16.3]
RoBERTa-base w/ KL 99.3 [0.10] 99.7 [0.4] 99.5 [0.3]

RoBERTa-base w/ JS 99.8 [0.40] 99.6 [1.5] 99.0 [1.3]

(C) Classification Performance Metrics (Section 5.3.2: Evaluation [3])

Models QQP (Acc/F1) PAWS (Acc/F1) MRPC (Acc/F1)

Bert-base 89.5 / 85.7 91.1 / 90.1 78.3 / 82.7
Bert-base w/ KL 87.1 / 82.3 88.0 / 86.8 73.0 / 80.7
Bert-base w/ JS 89.7 / 86.0 90.5 / 89.5 76.6 / 82.6

RoBERTa-base 90.2 / 87.2 92.6 / 91.7 82.4 / 86.0
RoBERTa-base w/ KL 87.2 / 82.7 91.5 / 90.5 74.7 / 81.0
RoBERTa-base w/ JS 90.0 / 86.6 92.3 / 91.6 79.2 / 84.9

(C) Classification Performance Metrics (Section 5.3.2: Evaluation [3])

Models SST2 (Acc) QNLI (Acc) RTE (Acc)

Bert-base 94.0 ± 0.10 87.9 ± 0.13 63.0 ± 1.33
Bert-base w/ KL 94.1 ± 0.20 71.2 ± 4.15 51.6 ± 1.50
Bert-base w/ JS 94.2 ± 0.42 74.5 ± 0.80 50.2 ± 16.90

RoBERTa-base 94.4 ± 0.39 89.9 ± 0.47 70.6 ± 2.35
RoBERTa-base w/ KL 94.5 ± 0.36 85.3 ± 1.62 58.7 ± 5.40
RoBERTa-base w/ JS 95.1 ± 0.12 86.8 ± 1.51 61.4 ± 1.06

Table 5.2: Parts (A) & (B): L2R and R2L Prediction and Confidence Consistency. Part (C)
Classification Metrics. (*-BASE) indicate , (*- W/ *) indicate . Higher Accuracy, Higher
Pearson Correlation and lower MSE are better. Numbers in bold are statistically significant.
Underlined numbers are better on average than baselines. Please refer to Section 5.4.1 for a
discussion.

3. MRPC: Microsoft Research Paraphrase Corpus [31] comprises human annotated sentence

pairs collected from newswire articles.

B. For Single Input Task:

1. SST2: Stanford Sentiment Treebank [123]. This is a collection of human-annotated

movie reviews. We work with the standard two-class setting where the annotations have
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opposite polarities (1 for positive sentiment and 0 otherwise).

C. For Non-symmetric tasks:

1. QNLI: Natural Language Inference dataset constructed from SQuAD [109] related to a

two-class classification problem to determine if the premise entails a hypothesis or not.

2. RTE: Recognizing Textual Entailment [27, 9, 43, 11] Corpus is a combination of multiple

RTE datasets containing one of two labels (1 for entailment and 0 for non-entailment).

5.3.2 Evaluation

We analyze the results of the traditional objective as well as our approach on Bert-Base and

RoBERTa-Base across four different seeds under the following categories:

1. Prediction Consistency: This evaluation is done only for the symmetric task. Score =
1(lL2R=lR2L)

(# of L2R Samples)
∗ 100, where lL2R, lR2L denote labels for L2R and R2L, respectively. Note

that this is not related to the ground truth labels.

2. Confidence Consistency: We perform these evaluations specifically for the symmetric

tasks. This is to analyze how aligned the confidence (softmax output associated with

label 1) is predicted by the model for L2R and R2L settings. The metrics used are the

Pearson correlation (scaled by 100) and the mean squared error (MSE - scaled by 1000)

between the two confidence scores of the test data.

3. Standard Classification Metrics: These are task-specific metrics (accuracy/F1) used

in the standard GLUE tasks [138]

5.3.3 Implementation Details

To fine-tune the model for symmetric tasks, we club together three paraphrase detection

datasets (a) QQP, (b) PAWS, and (c) MRPC. To ensure that all the models see the same

data, we augment the dataset with its reverse samples during training. The model is then

trained by passing the [CLSPara] (Section 5.2.2) representation through a low-capacity classi-

fier and optimized using Equation 5.1 for baseline models and Equation 5.2 for the consistency

inducing models (Ours). We then use these models to conduct two sets of evaluations. We

individually evaluate the paraphrase detection results on QQP, PAWS, and MRPC. We then

take the fine-tuned model obtained above and additionally fine-tune ([CLS] or <s> token) on

the single input task (SST-2) and non-symmetric tasks (QNLI, RTE).

76



We use the hugging-face library [144] for tokenizing the input, and the pytorch-lightning frame-

work [37] for loading the pre-trained models and fine-tuning them. We optimize the objective

using the AdamW [93] optimizer with a learning rate of 2e-5 (obtained through hyperparameter

tuning {2e-4, 2e-5, 4e-5, 2e-6}). Since the input contains an additional token [CLSPara], we

extend the tokenizer vocabulary for each model. Each model was fine-tuned on a single Nvidia

1080Ti GPU (12 GB) for a maximum of 3 epochs (≈ 6hrs/experiment). In the case of BERT

[28], we use the bert-base-cased model, while for RoBERTa [91], we use the RoBERTa-base

model. For training stability, we perform lambda-annealing, i.e., increase the λ parameter from

0.0 to 100.0 as the training progresses. This ensures that the model has developed the capability

to classify the sentence pairs with some degree of correctness before making it adhere to the

appropriate symmetric confidence scores. We also experimented with fixed λ, but the resultant

models converged slowly (≈ 15 epochs).

5.4 Results

Our experiments address three questions:

Q1. What are the shortcomings of the current objective function for symmetric tasks? (Section

5.1, Section 5.4.2)

Q2. Does adding the consistency loss alleviate the inconsistency problem? (Section 5.4.1)

Q3. Can consistency-based fine-tuning improve other downstream tasks? (Section 5.4.1)

5.4.1 Quantitative Analysis

Table 5.2 presents our results. Parts (A) & (B) compare L2R and R2L models in terms

of prediction consistency and confidence consistency. Models trained with the consistency loss

(indicated by W/∗) assign more similar predictions (indicated by higher scores in (A)) and confi-

dence scores (indicated by higher correlation in (B)) as compared to the base model (indicated

by −BASE), for both the base models (BERT-base/RoBERTa-base) and all symmetric

test data sets (QQP, PAWS, MRPC). Moreover, the MSE (indicated within square brackets

in part (B)) with consistency training is an order of magnitude smaller than without it. The

improvements in part (A) are statistically significant at a significance level (α) of 0.01 according

to McNemar’s statistical test [33].

Part (C) shows the results on downstream fine-tuning. Our models (indicated by W/∗)
do not compromise significantly (statistically evaluated) on the classification metrics for QQP,

PAWS, and MRPC (F1/accuracy). The consistency loss does not change the accuracy scores
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of single sentence input tasks (SST-2), but affects the non-symmetric tasks (QNLI, RTE) nega-

tively. This seems natural since the final objective of both tasks is quite different and, in many

cases, uncorrelated or negatively correlated. Incorporating consistency loss before fine-tuning

on non-symmetric tasks (such as entailment) should, therefore, be avoided.

Limitations: Our goal is to increase the reliability (measured in terms of confidence scores) of

the model and not specifically target classification performance metrics like accuracy and F1.

Cases where they increase can only partially be attributed to a stricter consistency constraint.

5.4.2 Qualitative Analysis

We sample 30 instances that were assigned opposite labels for L2R and R2L by the BERT-

Base models (majority voting) for QQP, MRPC, and PAWS. An evaluator with NLP expertise

analysed these examples and grouped them into recall error types. We then check the predic-

tions for the same set of instances from BERT + JS (recall). Counts for these error types

(defined in Section 5.4.3) are shown in Table 5.4. Out of those 30 examples for QQP, MRPC,

and PAWS, 26, 26, and 23 respectively get corrected by . In general, the numbers reduce for

all error types.

Dataset Example pair True
label

L2R
Label

R2L
Label

MRPC

(1) Shares in Wal-Mart closed at $ 58.28 , up 16 cents , in Tuesday
trading on the New York Stock Exchange. (2) Wal-Mart shares rose 16
cents to close at $ 58.28 on the New York Stock Exchange.

1 0 1

(1) Darren Dopp , a Spitzer spokesman , declined to comment late Thurs-
day. (2) John Heine , a spokesman for the commission in Washington ,
declined to comment on Mr. Spitzer ’s criticism.

0 0 1

QQP

(1) How do I retrieve my deleted history from Google chrome? (2) Can
history be retrieved after deleting Google chrome?

1 0 1

(1) Is consciousness possible without self-awareness? (2) Is self-
awareness possible without consciousness?

0 1 0

PAWS

(1) This iteration is larger and has a smaller storage capacity than its
previous versions. (2) This iteration is smaller and has a greater storage
capacity than its previous versions

0 0 1

(1) To get there , take Marine Drive west from the Lions Gate Bridge
past Horseshoe Bay to Lighthouse Park and then continue on to 7100
Block Marine Drive. (2) To get there , take the Marine Drive from the
Lions Gate Bridge to the west , past the Horseshoe Bay , Lighthouse Park
and continue on to the 7100 Marine Drive block.

1 1 0

Table 5.3: Sample pairs which are classified differently by the fine-tuned model based on their
input order in the standard classification setting in each of the paraphrase dataset. Please refer
Section 5.1, Section 5.2.2 for details.

78



5.4.3 Recall Error Types in Qualitative Analysis

The qualitative analysis compares types of errors with and without consistency loss. The recall

error types can be described as follows:

A. QQP:

1. Different expected answer: This error is said to occur in the case of QQP when the

two input questions have a different expected answer. An example of such a pair is: ‘Is

consciousness possible without self-awareness? ’ and ‘Is self-awareness possible without

consciousness? ’. The two questions are essential complements of each other.

2. Different answer type + Additional details: This error is said to occur when one

of the inputs is structured in a way that the answer would solicit additional details. For

example, the input pair ‘How do I structure a big PHP project? ’ and ‘How do I build

a perfect PHP project? ’ are similar - but nuances between ‘structuring’ and ‘building’ a

project may result in different answers.

3. Additional details and/or pronoun change: The input pair ‘What are the best ways

to get thick and wavy hair? ’ and ‘How can I get thick, wavy hair (as a guy)? ’ is similar

- although the latter uses the first-person pronoun.

B. MRPC:

1. Additional details missing: One of the inputs contains information (i.e., details) that

are not present in the other input. For example, ‘The caretaker, identified by church

officials as Jorge Manzon, was believed to be among the nine missing - some of them

children’ contains the number of missing persons that are not present in ‘The caretaker,

identified by church officials as Jorge Monzon, was believed to be among the missing, who

are presumed dead ’.

2. Reordering of phrases: The two inputs contain the same information although the

information may be represented using different phrasal structures. For example, ‘Shares

in Wal-Mart closed at $ 58.28 , up 16 cents , in Tuesday trading on the New York Stock

Exchange.’ conveys the same information as ‘Wal-Mart shares rose 16 cents to close at $
58.28 on the New York Stock Exchange .’ The former uses passive voice while the latter

uses ‘shares’ as the main verb.
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3. Named entities and pronouns: One input replaces entities with pronouns, as in the

case of ‘The bonds traded to below 60 percent of face value earlier this year ’ and ‘They

traded down early this year to 60 percent of face value on fears Aquila may default .’

4. Focus of sentences is different: While information in one input is subsumed by the

other, the latter might focus on a broader context. For example, ‘A power cut in New

York in 1977 left 9 million people without electricity for up to 25 hours ’ is implied in the

sentence ‘The outage resurrected memories of other massive power blackouts , including

one in 1977 that left about 9 million people without electricity for 25 hours .’ However,

the latter describes a resurrection of memories of the event in 1977.

5. Synonyms: One or more words in an input may be replaced by its synonyms in the other

input. For example, ‘In 2001 , the number of death row inmates nationally fell for the

first time in a generation’ can be converted to ‘In 2001 , the number of people on death

row dropped for the first time in a decade.’ by replacing the word ‘fell’ with ‘dropped’.

C. PAWS

1. Nouns/adjectives are changed: In the case of these errors, adjectives are replaced.

An example pair is ‘This iteration is larger and has a smaller storage capacity than its

previous versions ’ and ‘This iteration is smaller and has a greater storage capacity than

its previous versions .’

2. Named entities are changed: This refers to pairs where named entities (locations/people)

are different. An example is the pair ‘When Mexico was within Los Angeles , Botello was

chief of staff for Mexican General Ramirez y Sesma . His two brothers also married

daughters of the general ’ and ‘When Los Angeles was within Mexico , Botello was Chief

of Staff of the Mexican General Ramirez y Sesma , his two brothers also married the

general ’s daughters .’

5.5 Summary

In this chapter, we proposed an additional objective: consistency loss between L2R and R2L

predictions to alleviate the problem of input order-sensitive inconsistency in the case of symmet-

ric classification tasks. For three symmetric classification tasks, our proposed solution improves

consistency in terms of Pearson’s correlation and MSE. As expected, consistency loss results

in a drop in the performance of non-symmetric tasks such as QNLI and RTE. Surprisingly,

KL divergence results in marginally higher consistency than the JS counterpart. We leave this
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Error type

QQP

Different expected answer 4 0
Different answer type + Additional details 8 1
Different answer type + Additional details + Pronoun change 1 0
Additional details and/or pronoun change 17 3

MRPC

Additional details missing 13 2
Reordering of phrases 3 0
Named entities and pronouns 6 1
Focus of sentences is different 6 0
Synonyms 2 1

PAWS

Phrases are changed 10 4
Nouns/adjectives are changed 12 1
Nouns/adjectives and phrases are changed 4 0
Named entities are changed 3 1
Names entities and nouns/adjectives are changed 1 1

Table 5.4: Recall errors in QQP, MRPC & PAWS: BERT ( ) and BERT with JS ( ). Please
refer to Section 5.4.2.

analysis for future work. Our qualitative analysis shows that all error types, including changes

in phrases or addition/deletion of details, are reduced when the consistency loss is incorporated.

While consistency loss ensures that the predicted labels are the same even if the order of

inputs is swapped, it can be used in the future to ensure expected outputs for anti-symmetric

classification tasks (where P(L2R) = 1 − P(R2L)) like next and previous sentence prediction,

where reordering the inputs must result in an opposite predicted label. In addition, the pro-

posed method can be applied to evaluate paraphrase generation models [77, 78] as well. To

validate that paraphrasing models are indeed generating semantically similar outputs, BERT-

with-consistency can be used to either evaluate and filter out incorrect generations or be used

as an objective to train learned metrics like BLEURT [117].
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Chapter 6

Summary, Conclusions and Future

Work

This thesis deals with paraphrase generation and detection. Paraphrase generation involves

generating a text that conveys the same meaning as the source text but is expressed in different

words or structures. Paraphrase detection identifies whether a pair of texts have the same

meaning or intent. This thesis discussed approaches to induce constraints and consistency in

paraphrase generation and detection. Specifically, we focused on constraints in the form of di-

versity and syntax. Toward this, we presented approaches for diversity-aware and syntax-aware

paraphrase generation. Following that, we presented an approach for consistency-aware para-

phrase detection. Table 6.1 summarises the problems, examples, techniques, and key takeaways

presented in this thesis. The examples refer to the expected input/outputs for each problem.

In general, the approaches presented in this thesis enhance the applicability of paraphrase

generation and detection models in various natural language processing tasks.

6.1 Diversity in paraphrase generation

Diversity refers to the ability of a paraphrase generation model to generate sentences that differ

in their surface forms while retaining the meaning of the input sentence. Therefore, if the input

is ‘how do i increase body height ? ’, the expected outputs would be ‘how could i increase my

height ? ’, ‘what should I do to increase my height ? ’ and so on. These output sentences convey

the meaning of the input sentence but vary in their expressions. Prior works had limited

abilities to address this issue. We proposed a method that adds diversity constraint to the

decoding objective to handle this problem. We call this method DiPS and it outperforms past

approaches. DiPS maximises a novel submodular objective function designed for paraphrasing.
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Problems in
Paraphrasing

Examples Technique Key Takeaways

Diversity in
paraphrase
generation

Input (X):

Monotone submodular
function maximisation

DiPS model offers
high diversity without
compromising on
fidelity

- how do i increase body height ?

Output (Y):
- how could I increase my height ?

Useful for data
augmentation

- what should I do to increase my height ?
- what are the fastest ways to increase my height ?
- is there any proven method to increase height ?

Syntacticality in
paraphrase
generation

Input

TreeLSTM-based
paraphrase generation

SGCP was the
state-of-the-art
syntax-guided
paraphrase generation
model [154]

(X): What are pure substances ? What are some
examples ?
Exemplar sentence
(Z): What are the characteristics of the Elizabeth
theatre ?

Output
(Y): What are the examples of a pure substance ?

Consistency in
paraphrase
detection

Input

Minimise f -divergence
between L2R and R2L
label scores

Reduced inconsistency
in confidence scores
predicted by
pre-trained models

X: a provision government or a revolutionary gov-
ernment has been declared several times by insur-
gent groups in philippines .
Y: a provision government or a revolutionary gov-
ernment has been declared several times in philip-
pines by insurgent groups .

Output
For (X, Y) as input: 1 (88.3)
For (Y, X) as input: 1 (87.9)

Table 6.1: Summary of problems and approaches presented in this thesis.

The function allows a high degree of freedom to control fidelity and diversity of paraphrases.

We applied this to multiple data-augmentation settings on intent and question classification

tasks and observed consistent performance improvements.

6.2 Syntacticality in paraphrase generation

SGCP allows generation of syntactically controlled paraphrases from two sentences: input and

exemplar. The input sentence provides the content, while the exemplar sentence provides the

syntax. For example, assume that the input sentence is ‘what are pure substances ? what are

some examples ? ’ and the exemplar sentence is ‘what are the characteristics of the elizabeth

theatre ? ’. The paraphrase generator must be able to discover the structure of the exemplar

sentence that is closest to the content of the input sentence: ‘what are the A of B ? ’ and extract

the values of A and B as ‘examples ’ and ‘pure substance’ respectively to produce the output

sentence ‘what are some examples of a pure substance ? ’. Prior works have used a standard

LSTM-based approach with linearized constituency-based parse tree to capture syntactic infor-

mation. Deriving from this, we modify the LSTM architecture for the case of non-linearized
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constituency based parse tree. The modified LSTM-based tree encoder learns the syntax of

the exemplar sentence. During decoding, a pointer-generator-based decoder attends to relevant

tokens in the input sentence for generating the paraphrase. As a result, the output contains the

semantics of the input sentence cast into the structure of the exemplar sentence. This approach,

known as SGCP, generated multiple paraphrases according to different tree-level granularity.

This granularity depends on the height of the constituency tree extracted from the exemplar.

We experimented with two datasets, QQP-Pos and ParaNMT-small, and showed that SGCP

outperforms state-of-the-art baselines.

6.3 Consistency in paraphrase detection

Finally, we looked at the problem of inconsistencies in fine-tuned embedding-based pre-trained

cross-encoder models for paraphrase detection. Prior cross-encoder-based methods were sen-

sitive to input order in symmetric classification tasks such as paraphrase detection. This was

inconsistent with the definitions of semantic similarity, which is an equivalent relationship: if X

is similar to Y, then Y is similar to X. We proposed an additional objective: consistency loss

between Left− to− right and Right− to− left predictions to alleviate the problem of input

order-sensitive inconsistency in the case of symmetric classification tasks such as paraphrase

detection. For three symmetric classification datasets: QQP, MRPC, and PAWS, our proposed

solution improved consistency in terms of Pearson’s correlation and Mean Squared Error.

6.4 Future Work

We now discuss how our approaches may impact constrained paraphrase generation, data-

augmentation, and other NLG problems in conversational agents and text summarization.

While we have shown the application of using DiPS in augmenting samples for simple clas-

sification tasks, we anticipate its utility in self-training for generative models as well. Diversity-

aware paraphrasing has been applied to Transformer models for obtaining multiple candidates

[29, 38]. A simple modification in the objective of DiPS opens up avenues for other NLG setups

which require generations to possess diversity while not lacking the other required qualities.

For example, goal-oriented conversational agents need diverse utterances without losing their

context. Similarly, summarization systems must remove redundant clauses while incorporating

diverse key information in the original article. This can be achieved by augmenting diverse

paraphrases.

We anticipate that syntax-aware paraphrasing will help provide additional information to

the NLG systems, help build competitive test sets for assessing the robustness of general NLP

models, and aid in science journalism [115]. Syntax-guided paraphrasing generates candidates
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with diverse structures, potentially enriching test sets after thorough human evaluation for

assessing other natural language generation (NLG) systems.

Although we explored an LSTM-based architecture for both DiPS and SGCP, we anticipate

better results using current state-of-the-art self-attention-based models1. Investigating these

approaches in guiding multilingual NLG models also seems like a natural next step [92, 147].

Scaling these methods to larger datasets could provide insights into their performance on more

diverse sentence structures. Furthermore, exploring the approach in other languages could

extend its applicability and usefulness. Additionally, investigating the potential of different

tree encoders to provide additional syntactic information to guide the paraphrase generator

could further improve the quality and diversity of the generated paraphrases.

While building generation models for NLP caters to a wide variety of tasks, the texts

generated by those models must be adequately assessed. To validate that NLG models are

generating semantically correct outputs, BERT-with-consistency can either evaluate and filter

out incorrect generations or as an additional objective for training learned metrics like BLEURT

[117]. Another interesting direction is to apply the objective to anti-symmetric classification

tasks (where P(L2R) = 1−P(R2L)) like next and previous sentence prediction, where reordering

the inputs must result in an opposite predicted label to obtain the expected order-based outputs.

We anticipate that such a formulation may help the models make more informed predictions.

Broadly speaking, techniques presented in this thesis will directly impact at least two NLG

tasks: summarization and conversational agents.

As mentioned earlier, incorporating diversity and syntacticality in paraphrase generation can

have significant benefits in building better summarization systems and conversation agents. We

discuss them below.

(a) By generating a diverse set of paraphrases, summarization systems can select the most

suitable alternative expression or phrase that conveys the intended meaning while consider-

ing overall summary coherence, clarity, brevity, and relevance. This can also help prevent

over-reliance on specific phrasing patterns that can result in monotonous and uninteresting

summaries.

(b) In conversation agents, paraphrase generation systems can facilitate generating more

varied and natural-sounding responses. By incorporating diversity, the conversation agent can

generate a broader range of responses that incorporate different stylistic variations tailored to

the user’s preferences and conversational style. This can help enhance the overall user experience

by enabling the conversation agent to provide more personalized and engaging interactions.

1Subsequent works [16, 127] explored the methods through the pre-trained models and found the resulting
generations useful for data augmentation.
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